47 research outputs found

    Usefulness of High Mobility Group Box 1 Protein as a Plasma Biomarker in Patient with Peripheral Artery Disease

    Get PDF
    Atherosclerosis is often associated with chronic vascular inflammation. High-mobility group box 1 protein (HMGB1) plays various roles, not only as a transcriptional regulatory factor in the nucleus, but also as an inflammatory mediator. A previous study suggested that fibrinogen is an important factor associated with atherosclerosis progression. The present study was performed to examine the levels of plasma HMGB1 protein in atherosclerosis patients. We studied 24 patients with peripheral artery disease (PAD) with atherosclerosis, and 10 healthy controls. We found that the concentrations of HMGB1 were increased in the plasma of the patients with atherosclerosis, and there were significant correlations between the plasma HMGB1 and fibrinogen levels. Plasma HMGB1 may play a key role in the pathogenesis of clinical and experimental atherosclerosis

    For Vol.68, No.3 pp157-162 Usefulness of High Mobility Group Box 1 Protein as a Plasma Biomarker in Patient with Peripheral Artery Disease

    Get PDF
    Atherosclerosis is often associated with chronic vascular inflammation. High-mobility group box 1 protein (HMGB1) plays various roles, not only as a transcriptional regulatory factor in the nucleus, but also as an inflammatory mediator. A previous study suggested that fibrinogen is an important factor associated with atherosclerosis progression. The present study was performed to examine the levels of plasma HMGB1 protein in atherosclerosis patients. We studied 24 patients with peripheral artery disease (PAD) with atherosclerosis, and 10 healthy controls. We found that the concentrations of HMGB1 were increased in the plasma of the patients with atherosclerosis, and there were significant correlations between the plasma HMGB1 and fibrinogen levels. Plasma HMGB1 may play a key role in the pathogenesis of clinical and experimental atherosclerosis

    Trial of Sportswear Type ECG Sensor Device for Cardiac Safety Management during Marathon Running

    Get PDF
    Cardiac arrest has been reported during participation in several sports. Of these sports, marathon running is a particularly popular sport but imposes high cardiac load. Indeed, its popularity has been growing worldwide. Risk of cardiac arrest during marathon races is also expected to increase. Several studies have recorded electrocardiographic (ECG) information during marathon races to protect athletes from cardiac arrest. Although evaluable ECG data have been obtained and analyzed, cost-effectiveness of the system, data quality, and clinical significance remain inadequate. This report is the first to describe an economical electrocardiograph built into a T-shirt for use during marathon race. Twenty healthy runners aged 20 to 59 years (mean 36 years) wore the ECG device while running. The ECG data were monitored and analyzed to assess the observed frequencies of specified arrhythmias and the sections of the marathon in which the arrhythmias occurred. Of the ECG data obtained from 14 runners who completed the full marathon, six ECG datasets were evaluable. In some runners, there was inadequate contact between the electrode and body surface or poor Bluetooth connection between the ECG wireless transmitter and smartphone. Regarding arrhythmia analysis, all evaluable data that were analyzed showed some rhythm fluctuations. In conclusion, this economical T-shirt type ECG sensor provided evaluable ECG data during marathon races, although the evaluable rate was not high. The data were used to analyze specified arrhythmias, but some difficulties were encountered. The ECG sensor did not function properly because of a system error. The ECG sensor was not adequately moistened to record ECGs accurately. Moreover, some runners chose an unsuitable shirt size, which impaired the stability and strength of the electrode–skin contact. These shortcomings produced noise in the ECG data, which made it difficult to analyze arrhythmias. The next step will be to solve these problems and acquire data from a large number of runners

    Computational confirmation of scaling predictions for equilibrium polymers

    Full text link
    We report the results of extensive Dynamic Monte Carlo simulations of systems of self-assembled Equilibrium Polymers without rings in good solvent. Confirming recent theoretical predictions, the mean-chain length is found to scale as \Lav = \Lstar (\phi/\phistar)^\alpha \propto \phi^\alpha \exp(\delta E) with exponents αd=δd=1/(1+γ)≈0.46\alpha_d=\delta_d=1/(1+\gamma) \approx 0.46 and αs=[1+(γ−1)/(νd−1)]/2≈0.60,δs=1/2\alpha_s = [1+(\gamma-1)/(\nu d -1)]/2 \approx 0.60, \delta_s=1/2 in the dilute and semi-dilute limits respectively. The average size of the micelles, as measured by the end-to-end distance and the radius of gyration, follows a very similar crossover scaling to that of conventional quenched polymer chains. In the semi-dilute regime, the chain size distribution is found to be exponential, crossing over to a Schultz-Zimm type distribution in the dilute limit. The very large size of our simulations (which involve mean chain lengths up to 5000, even at high polymer densities) allows also an accurate determination of the self-avoiding walk susceptibility exponent γ=1.165±0.01\gamma = 1.165 \pm 0.01.Comment: 6 pages, 4 figures, LATE

    Diamond-like carbon coating to inner surface of polyurethane tube reduces Staphylococcus aureus bacterial adhesion and biofilm formation

    Get PDF
    Staphylococcus aureus is one of the main causative bacteria for polyurethane catheter and artificial graft infection. Recently, we developed a unique technique for coating diamond-like carbon (DLC) inside the luminal resin structure of polyurethane tubes. This study aimed to elucidate the infection-preventing effects of diamond-like carbon (DLC) coating on a polyurethane surface against S. aureus. We applied DLC to polyurethane tubes and rolled polyurethane sheets with our newly developed DLC coating technique for resin tubes. The DLC-coated and uncoated polyurethane surfaces were tested in smoothness, hydrophilicity, zeta-potential, and anti-bacterial properties against S. aureus (biofilm formation and bacterial attachment) by contact with bacterial fluids under static and flow conditions. The DLC-coated polyurethane surface was significantly smoother, more hydrophilic, and had a more negative zeta-potential than did the uncoated polyurethane surface. Upon exposure to bacterial fluid under both static and flow conditions, DLC-coated polyurethane exhibited significantly less biofilm formation than uncoated polyurethane, based on absorbance measurements. In addition, the adherence of S. aureus was significantly lower for DLC-coated polyurethane than for uncoated polyurethane under both conditions, based on scanning electron microscopy. These results show that applying DLC coating to the luminal resin of polyurethane tubes may impart antimicrobial effects against S. aureus to implantable medical polyurethane devices, such as vascular grafts and central venous catheters

    Scale-free static and dynamical correlations in melts of monodisperse and Flory-distributed homopolymers: A review of recent bond-fluctuation model studies

    Full text link
    It has been assumed until very recently that all long-range correlations are screened in three-dimensional melts of linear homopolymers on distances beyond the correlation length ξ\xi characterizing the decay of the density fluctuations. Summarizing simulation results obtained by means of a variant of the bond-fluctuation model with finite monomer excluded volume interactions and topology violating local and global Monte Carlo moves, we show that due to an interplay of the chain connectivity and the incompressibility constraint, both static and dynamical correlations arise on distances r≫ξr \gg \xi. These correlations are scale-free and, surprisingly, do not depend explicitly on the compressibility of the solution. Both monodisperse and (essentially) Flory-distributed equilibrium polymers are considered.Comment: 60 pages, 49 figure

    HMGB1 Attenuates Cardiac Remodelling in the Failing Heart via Enhanced Cardiac Regeneration and miR-206-Mediated Inhibition of TIMP-3

    Get PDF
    Aims: HMGB1 injection into the mouse heart, acutely after myocardial infarction (MI), improves left ventricular (LV) function and prevents remodeling. Here, we examined the effect of HMGB1 in chronically failing hearts. Methods and Results: Adult C57 BL16 female mice underwent coronary artery ligation; three weeks later 200 ng HMGB1 or denatured HMGB1 (control) were injected in the peri-infarcted region of mouse failing hearts. Four weeks after treatment, both echocardiography and hemodynamics demonstrated a significant improvement in LV function in HMGB1-treated mice. Further, HMGB1-treated mice exhibited a,23 % reduction in LV volume, a,48 % increase in infarcted wall thickness and a,14 % reduction in collagen deposition. HMGB1 induced cardiac regeneration and, within the infarcted region, it was found a,2-fold increase in c-kit + cell number, a,13-fold increase in newly formed myocytes and a,2-fold increase in arteriole length density. HMGB1 also enhanced MMP2 and MMP9 activity and decreased TIMP-3 levels. Importantly, miR-206 expression 3 days after HMGB1 treatment was 4-5-fold higher than in control hearts and 20–25 fold higher that in sham operated hearts. HMGB1 ability to increase miR-206 was confirmed in vitro, in cardiac fibroblasts. TIMP3 was identified as a potential miR-206 target by TargetScan prediction analysis; further, in cultured cardiac fibroblasts, miR-206 gain- and loss-offunction studies and luciferase reporter assays showed that TIMP3 is a direct target of miR-206. Conclusions: HMGB1 injected into chronically failing hearts enhanced LV function and attenuated LV remodelling; thes

    Extracellular High Mobility Group Box 1 Plays a Role in the Effect of Bone Marrow Mononuclear Cell Transplantation for Heart Failure

    Get PDF
    Transplantation of unfractionated bone marrow mononuclear cells (BMCs) repairs and/or regenerates the damaged myocardium allegedly due to secretion from surviving BMCs (paracrine effect). However, donor cell survival after transplantation is known to be markedly poor. This discrepancy led us to hypothesize that dead donor BMCs might also contribute to the therapeutic benefits from BMC transplantation. High mobility group box 1 (HMGB1) is a nuclear protein that stabilizes nucleosomes, and also acts as a multi-functional cytokine when released from damaged cells. We thus studied the role of extracellular HMGB1 in the effect of BMC transplantation for heart failure. Four weeks after coronary artery ligation in female rats, syngeneic male BMCs (or PBS only as control) were intramyocardially injected with/without anti-HMGB1 antibody or control IgG. One hour after injection, ELISA showed that circulating extracellular HMGB1 levels were elevated after BMC transplantation compared to the PBS injection. Quantitative donor cell survival assessed by PCR for male-specific sry gene at days 3 and 28 was similarly poor. Echocardiography and catheterization showed enhanced cardiac function after BMC transplantation compared to PBS injection at day 28, while this effect was abolished by antibody-neutralization of HMGB1. BMC transplantation reduced post-infarction fibrosis, improved neovascularization, and increased proliferation, while all these effects in repairing the failing myocardium were eliminated by HMGB1-inhibition. Furthermore, BMC transplantation drove the macrophage polarization towards alternatively-activated, anti-inflammatory M2 macrophages in the heart at day 3, while this was abolished by HMGB1-inhibition. Quantitative RT-PCR showed that BMC transplantation upregulated expression of an anti-inflammatory cytokine IL-10 in the heart at day 3 compared to PBS injection. In contrast, neutralizing HMGB1 by antibody-treatment suppressed this anti-inflammatory expression. These data suggest that extracellular HMGB1 contributes to the effect of BMC transplantation to recover the damaged myocardium by favorably modulating innate immunity in heart failure
    corecore