193 research outputs found

    The effect of giant molecular clouds on star clusters

    Get PDF
    We study the encounters between stars clusters and giant molecular clouds (GMCs). The effect of these encounters has previously been studied analytically for two cases: 1) head-on encounters, for which the cluster moves through the centre of the GMC and 2) distant encounters, where the encounter distance p > 3*R_n, with p the encounter parameter and R_n the radius of the GMC. We introduce an expression for the energy gain of the cluster due to GMC encounters valid for all values of p and R_n. This analytical result is confronted with results from N-body simulations and excellent agreement is found. From the simulations we find that the fractional mass loss is only 25% of the fractional energy gain. This is because stars escape with velocities much higher than the escape velocity. Based on the mass loss, we derive a disruption time for star clusters due to encounters with GMCs of the form t_dis [Gyr] = 2.0*S*(M_c/10^4 M_sun)^gamma, with S=1 for the solar neighbourhood and inversely proportional with the global GMC density and gamma=1-3lambda, with lambda the index that relates the cluster half-mass radius to the cluster mass (r_h ~ M_c^lambda). The observed shallow relation between cluster radius and mass (e.g. lambda=0.1), makes the index (gamma=0.7) similar to the index found both from observations and from simulations of clusters dissolving in tidal fields (gamma=0.62). The constant of 2.0 Gyr, which is the disruption time of a 10^4 M_sun cluster in the solar neighbourhood, is close to the value of 1.3 Gyr which was empirically determined from the age distribution of open clusters. This suggests that the combined effect of GMC encounters, stellar evolution and galactic tidal field can explain the lack of old open clusters in the solar neighbourhood.Comment: 2 pages, 2 figures, contribution to "Globular Clusters: Guides to Galaxies", March 6th-10th, 200

    Note on the Difference in Velocity between Absolutely Bright and Faint Stars

    Get PDF
    Wetensch. publicati

    Galaxies and the Universe

    Get PDF
    Wetensch. publicati

    Vertical distribution of stars and gas in a galactic disk

    Full text link
    We study the vertical density distribution of stars and gas (HI and H_2) in a galactic disk which is embedded in a dark matter halo. The new feature of this work is the inclusion of gas, and the gravitational coupling between stars and gas, which has led to a more realistic treatment of a multi-component galactic disk. The gas gravity is shown to be crucially important despite the low gas mass fraction. This approach physically explains the observed scaleheight distribution of all the three disk components, including the long-standing puzzle (Oort 1962) of a constant HI scaleheight observed in the inner Galaxy. The above model is applied to two external galaxies: NGC 891 and NGC 4565, and the stellar disk is shown to be not strictly flat as was long believed but rather it shows a moderate flaring of a factor of about 2 within the optical radius.Comment: 4 pages, 2 figures; to appear in the Proceedings of "Island Universes: Structure and evolution of disk galaxies" (Terschelling, The Netherlands, July 2005), ed. R. de Jon

    New observations of the NGC 1275 phenomenon

    Get PDF
    Wetensch. publicatieFaculteit der Wiskunde en Natuurwetenschappe

    Phenomenological constraints on Lemaitre-Tolman-Bondi cosmological inhomogeneities from solar system dynamics

    Full text link
    We, first, analytically work out the long-term, i.e. averaged over one orbital revolution, perturbations on the orbit of a test particle moving in a local Fermi frame induced therein by the cosmological tidal effects of the inhomogeneous Lemaitre-Tolman-Bondi (LTB) model. The LTB solution has recently attracted attention, among other things, as a possible explanation of the observed cosmic acceleration without resorting to dark energy. Then, we phenomenologically constrain both the parameters K_1 = -\ddot R/R and K_2 = -\ddot R^'/R^' of the LTB metric in the Fermi frame by using different kinds of solar system data. The corrections Δϖ˙\Delta\dot\varpi to the standard Newtonian/Einsteinian precessions of the perihelia of the inner planets recently estimated with the EPM ephemerides, compared to our predictions for them, yield K_1 = (4+8) 10^-26 s^-2, K_2 = (3+7) 10^-23 s^-2. The residuals of the Cassini-based Earth-Saturn range, compared with the numerically integrated LTB range signature, allow to obtain K_1/2 = 10^-27 s^-2. The LTB-induced distortions of the orbit of a typical object of the Oort cloud with respect to the commonly accepted Newtonian picture, based on the observations of the comet showers from that remote region of the solar system, point towards K_1/2 <= 10^-30-10^-32 s^-2. Such figures have to be compared with those inferred from cosmological data which are of the order of K1 \approx K2 = -4 10^-36 s^-2.Comment: LaTex2e, 18 pages, 3 tables, 3 figures. Minor changes. Reference added. Accepted by Journal of Cosmology and Astroparticle Physics (JCAP

    Effect of Sun and Planet-Bound Dark Matter on Planet and Satellite Dynamics in the Solar System

    Full text link
    We apply our recent results on orbital dynamics around a mass-varying central body to the phenomenon of accretion of Dark Matter-assumed not self-annihilating-on the Sun and the major bodies of the solar system due to its motion throughout the Milky Way halo. We inspect its consequences on the orbits of the planets and their satellites over timescales of the order of the age of the solar system. It turns out that a solar Dark Matter accretion rate of \approx 10^-12 yr^-1, inferred from the upper limit \Delta M/M= 0.02-0.05 on the Sun's Dark Matter content, assumed somehow accumulated during last 4.5 Gyr, would have displaced the planets faraway by about 10^-2-10^1 au 4.5 Gyr ago. Another consequence is that the semimajor axis of the Earth's orbit, approximately equal to the Astronomical Unit, would undergo a secular increase of 0.02-0.05 m yr^-1, in agreement with the latest observational determinations of the Astronomical Unit secular increase of 0.07 +/- 0.02 m yr^-1 and 0.05 m yr^-1. By assuming that the Sun will continue to accrete Dark Matter in the next billions year at the same rate as in the past, the orbits of its planets will shrink by about 10^-1-10^1 au (\approx 0.2-0.5 au for the Earth), with consequences for their fate, especially of the inner planets. On the other hand, lunar and planetary ephemerides set upper bounds on the secular variation of the Sun's gravitational parameter GM which are one one order of magnitude smaller than 10^-12 yr^-1. Dark Matter accretion on planets has, instead, less relevant consequences for their satellites. Indeed, 4.5 Gyr ago their orbits would have been just 10^-2-10^1 km wider than now. (Abridged)Comment: LaTex2e, 17 pages, no figures, 7 tables, 61 references. Small problem with a reference fixed. To appear in Journal of Cosmology and Astroparticle Physics (JCAP

    Del Pezzo surfaces of degree 1 and jacobians

    Full text link
    We construct absolutely simple jacobians of non-hyperelliptic genus 4 curves, using Del Pezzo surfaces of degree 1. This paper is a natural continuation of author's paper math.AG/0405156.Comment: 24 page

    Structure, mass and stability of galactic disks

    Full text link
    In this review I concentrate on three areas related to structure of disks in spiral galaxies. First I will review the work on structure, kinematics and dynamics of stellar disks. Next I will review the progress in the area of flaring of HI layers. These subjects are relevant for the presence of dark matter and lead to the conclusion that disk are in general not `maximal', have lower M/L ratios than previously suspected and are locally stable w.r.t. Toomre's Q criterion for local stability. I will end with a few words on `truncations' in stellar disks.Comment: Invited review at "Galaxies and their Masks" for Ken Freeman's 70-th birthday, Sossusvlei, Namibia, April 2010. A version with high-res. figures is available at http://www.astro.rug.nl/~vdkruit/jea3/homepage/Namibiachapter.pd
    corecore