31 research outputs found

    Solar geoengineering: The case for an international non-use agreement

    Get PDF
    Solar geoengineering is gaining prominence in climate change debates as an issue worth studying; for some it is even a potential future policy option. We argue here against this increasing normalization of solar geoengineering as a speculative part of the climate policy portfolio. We contend, in particular, that solar geoengineering at planetary scale is not governable in a globally inclusive and just manner within the current international political system. We therefore call upon governments and the United Nations to take immediate and effective political control over the development of solar geoengineering technologies.Specifically, we advocate for an International Non-Use Agreement on Solar Geoengineering and outline the core elements of this proposal

    An exploration of the gut and environmental resistome in a community in northern Vietnam in relation to antibiotic use

    No full text
    Contains fulltext : 214104.pdf (publisher's version ) (Open Access

    Cross-Sectional Analysis of the Microbiota of Human Gut and Its Direct Environment in a Household Cohort with High Background of Antibiotic Use

    No full text
    Comprehensive insight into the microbiota of the gut of humans and animals, as well as their living environment, in communities with a high background of antibiotic use and antibiotic resistance genes is scarce. Here, we used 16S rRNA gene sequencing to describe the (dis)similarities in the microbiota of feces from humans (n = 107), domestic animals (n = 36), water (n = 89), and processed food (n = 74) in a cohort with individual history of antibiotic use in northern Vietnam. A significantly lower microbial diversity was observed among individuals who used antibiotics in the past 4 months (n = 44) compared to those who did not (n = 63). Fecal microbiota of humans was more diverse than nonhuman samples and shared a small part of its amplicon sequence variants (ASVs) with feces from animals (7.4% (3.2–9.9)), water (2.2% (1.2–2.8)), and food (3.1% (1.5–3.1)). Sharing of ASVs between humans and companion animals was not associated with the household. However, we did observe a correlation between an Enterobacteriaceae ASV and the presence of extended-spectrum beta-lactamase CTX-M-group-2 encoding genes in feces from humans and animals (p = 1.6 × 10(−3) and p = 2.6 × 10(−2), respectively), hinting toward an exchange of antimicrobial-resistant strains between reservoirs

    A SARS-CoV-2 Wuhan spike virosome vaccine induces superior neutralization breadth compared to one using the Beta spike

    No full text
    Current SARS-CoV-2 vaccines are effective, but long-term protection is threatened by the emergence of virus variants. We generated a virosome vaccine containing the Beta spike protein and compared its immunogenicity in mice to a virosome vaccine containing the original Wuhan spike. Two administrations of the virosomes induced potent SARS-CoV-2 neutralizing antibodies in both vaccine groups. The level of autologous neutralization in Beta-vaccinated mice was similar to the level of autologous neutralization in Wuhan-vaccinated mice. However, heterologous neutralization to the Wuhan strain in Beta-vaccinated mice was 4.7-fold lower than autologous neutralization, whereas heterologous neutralization to the Beta strain in Wuhan-vaccinated mice was reduced by only 1.9-fold compared to autologous neutralization levels. In addition, neutralizing activity against the D614G, Alpha and Delta variants was also significantly lower after Beta spike vaccination than after Wuhan spike vaccination. Our results show that Beta spike vaccination induces inferior neutralization breadth. These results are informative for programs aimed to develop broadly active SARS-CoV-2 vaccines

    Solar geoengineering: The case for an international non‐use agreement

    Get PDF
    Solar geoengineering is gaining prominence in climate change debates as an issue worth studying; for some it is even a potential future policy option. We argue here against this increasing normalization of solar geoengineering as a speculative part of the climate policy portfolio. We contend, in particular, that solar geoengineering at planetary scale is not governable in a globally inclusive and just manner within the current international political system. We therefore call upon governments and the United Nations to take immediate and effective political control over the development of solar geoengineering technologies. Specifically, we advocate for an International Non-Use Agreement on Solar Geoengineering and outline the core elements of this proposal. This article is categorized under: Policy and Governance > International Policy Framework

    How to Count Our Microbes? The Effect of Different Quantitative Microbiome Profiling Approaches

    No full text
    Next-generation sequencing (NGS) has instigated the research on the role of the microbiome in health and disease. The compositional nature of such microbiome datasets makes it however challenging to identify those microbial taxa that are truly associated with an intervention or health outcome. Quantitative microbiome profiling overcomes the compositional structure of microbiome sequencing data by integrating absolute quantification of microbial abundances into the NGS data. Both cell-based methods (e.g., flow cytometry) and molecular methods (qPCR) have been used to determine the absolute microbial abundances, but to what extent different quantification methods generate similar quantitative microbiome profiles has so far not been explored. Here we compared relative microbiome profiling (without incorporation of microbial quantification) to three variations of quantitative microbiome profiling: (1) microbial cell counting using flow cytometry (QMP), (2) counting of microbial cells using flow cytometry combined with Propidium Monoazide pre-treatment of fecal samples before metagenomics DNA isolation in order to only profile the microbial composition of intact cells (QMP-PMA), and (3) molecular based quantification of the microbial load using qPCR targeting the 16S rRNA gene. Although qPCR and flow cytometry both resulted in accurate and strongly correlated results when quantifying the bacterial abundance of a mock community of bacterial cells, the two methods resulted in highly divergent quantitative microbial profiles when analyzing the microbial composition of fecal samples from 16 healthy volunteers. These differences could not be attributed to the presence of free extracellular prokaryotic DNA in the fecal samples as sample pre-treatment with Propidium Monoazide did not improve the concordance between qPCR-based and flow cytometry-based QMP. Also lack of precision of qPCR was ruled out as a major cause of the disconcordant findings, since quantification of the fecal microbial load by the highly sensitive digital droplet PCR correlated strongly with qPCR. In conclusion, quantitative microbiome profiling is an elegant approach to bypass the compositional nature of microbiome NGS data, however it is important to realize that technical sources of variability may introduce substantial additional bias depending on the quantification method being used

    Solar geoengineering: The case for an international non‐use agreement

    No full text
    Solar geoengineering is gaining prominence in climate change debates as an issue worth studying; for some it is even a potential future policy option. We argue here against this increasing normalization of solar geoengineering as a speculative part of the climate policy portfolio. We contend, in particular, that solar geoengineering at planetary scale is not governable in a globally inclusive and just manner within the current international political system. We therefore call upon governments and the United Nations to take immediate and effective political control over the development of solar geoengineering technologies. Specifically, we advocate for an International Non-Use Agreement on Solar Geoengineering and outline the core elements of this proposal. This article is categorized under: Policy and Governance > International Policy Framework

    A third SARS-CoV-2 spike vaccination improves neutralization of variants-of-concern

    No full text
    The emergence of SARS-CoV-2 variants that are more resistant to antibody-mediated neutralization pose a new hurdle in combating the COVID-19 pandemic. Although vaccines based on the original Wuhan sequence have been shown to be effective at preventing COVID-19, their efficacy is likely to be decreased against more neutralization-resistant variants-of-concern (VOC), in particular, the Beta variant originating in South Africa. We assessed, in mice, rabbits, and non-human primates, whether a third vaccination with experimental Wuhan-based Spike vaccines could alleviate this problem. Our data show that a third immunization improves neutralizing antibody titers against the variants-of-concern, Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), and Delta (B.1.617.2). After three vaccinations, the level of neutralization against Beta was similar to the level of neutralization against the original strain after two vaccinations, suggesting that simply providing a third immunization could nullify the reduced activity of current vaccines against VOC

    Comparing the human milk antibody response after vaccination with four COVID-19 vaccines: A prospective, longitudinal cohort study in the Netherlands

    No full text
    Background: Vaccination of lactating women against COVID-19 may protect not only themselves but also their breastfed infant through human milk. Therefore, it is important to gain insight into the human milk antibody response after immunization with the various vaccines that are currently widely used. The aim of this study is to determine and compare the antibody response in human milk following vaccination with mRNA- and vector-based vaccines up to over two months post-vaccination. Methods: This prospective cohort study was conducted in the Netherlands between January 06, 2021 and July 31, 2021. Participants were recruited through social media. Human milk samples were collected longitudinally during a period of 70 days from women receiving one of the four different severe acute respiratory coronavirus 2 (SARS-CoV-2) vaccines: Pfizer-BioNTech (BNT162b2), Moderna (mRNA-1273), Oxford/AstraZeneca (AZD1222) and Johnson&Johnson (Ad26.COV2.S). SARS-CoV-2-specific antibodies were measured using an enzyme-linked immunosorbent assay. The area under the curve (AUC) of the Immunoglobulins A (IgA) and G (IgG) antibody response was determined over 15 and 70 days following the first vaccination and compared between the different vaccines. Findings: This study enrolled 134 vaccinated lactating women of whom 97 participated the entire study period. In total, 1887 human milk samples were provided. The human milk antibody response differed between SARS-CoV-2 vaccines over the study period. The mean AUC of SARS-CoV-2-specific IgA, but not IgG, in human milk over 15 days was higher after vaccination with an mRNA-based vaccine than a vector-based vaccine (AUC with respect to ground [AUCg] ± the standard error of the mean [SEM] for IgA was 6·09 ± 0·89 in the BNT162b2 group, 7·48 ± 1·03 in the mRNA-1273 group, 4·17 ± 0·73 in the AZD1222 group, and 5·71 ± 0·70 in the Ad26.COV2.S group). Over a period of 70 days, the mean AUCg of both IgA and IgG was higher after vaccination with an mRNA-based vaccine than a vector-based vaccine (AUCg ± SEM for IgA was 38·77 ± 6·51 in the BNT162b2 group, 50·13 ± 7·41 in the mRNA-1273 group, 24·12 ± 5·47 in the AZD1222 group, and 28·15 ± 6·69 in the Ad26.COV2.S group; AUCg ± SEM for IgG was 40·43 ± 2·67 in the BNT162b2 group, 37·01 ± 2·38 in the mRNA-1273 group, 16·04 ± 5·09 in the AZD1222 group, and 10·44 ± 2·50 in the Ad26.COV2.S group). Interpretation: Overall, maternal vaccination during lactation with an mRNA-based vaccine resulted in higher SARS-CoV-2 antibody responses in human milk compared to vector-based vaccines. Therefore, vaccination with mRNA-based vaccines, preferably with the mRNA-1273 vaccine, might not only provide better immunological protection for the mother but also for her breastfed infant. Funding: Stichting Steun Emma Kinderziekenhuis and the Amsterdam Infection and Immunity Institute (grant 24175)

    Recent infection with HCoV-OC43 may be associated with protection against SARS-CoV-2 infection

    No full text
    Antibodies against seasonal human coronaviruses (HCoVs) are known to cross-react with SARS-CoV-2, but data on cross-protective effects of prior HCoV infections are conflicting. In a prospective cohort of healthcare workers (HCWs), we studied the association between seasonal HCoV (OC43, HKU1, 229E and NL63) nucleocapsid protein IgG and SARS-CoV-2 infection during the first pandemic wave in the Netherlands (March 2020 - June 2020), by 4-weekly serum sampling. HCW with HCoV-OC43 antibody levels in the highest quartile, were less likely to become SARS-CoV-2 seropositive when compared with those with lower levels (6/32, 18.8%, versus 42/97, 43.3%, respectively: p = 0.019; HR 0.37, 95% CI 0.16-0.88). We found no significant association with HCoV-OC43 spike protein IgG, or with antibodies against other HCoVs. Our results indicate that the high levels of HCoV-OC43-nucleocapsid antibodies, as an indicator of a recent infection, are associated with protection against SARS-CoV-2 infection; this supports and informs efforts to develop pancoronavirus vaccines
    corecore