1,532 research outputs found

    Thermoacoustic effects in supercritical fluids near the critical point: Resonance, piston effect, and acoustic emission and reflection

    Full text link
    We present a general theory of thermoacoustic phenomena in supercritical fluids near the critical point in a one-dimensional cell. We take into account the effects of the heat conduction in the boundary walls and the bulk viscosity near the critical point. We introduce a coefficient Z(ω)Z(\omega) characterizing reflection of sound with frequency ω\omega at the boundary. As applications, we examine the acoustic eigenmodes in the cell, the response to time-dependent perturbations, sound emission and reflection at the boundary. Resonance and rapid adiabatic changes are noteworthy. In these processes, the role of the thermal diffusion layers is enhanced near the critical point because of the strong critical divergence of the thermal expansion.Comment: 15 pages, 7 figure

    Dynamics of Binary Mixtures with Ions: Dynamic Structure Factor and Mesophase Formation

    Get PDF
    Dynamic equations are presented for polar binary mixtures containing ions in the presence of the preferential solvation. In one-phase states, we calculate the dynamic structure factor of the composition accounting for the ion motions. Microphase separation can take place for sufficiently large solvation asymmetry of the cations and the anions. We show two-dimensional simulation results of the mesophase formation with an antagonistic salt, where the cations are hydrophilic and the anions are hydrophobic. The structure factor S(q) in the resultant mesophase has a sharp peak at an intermediate wave number on the order of the Debye-Huckel wave number. As the quench depth is increased, the surface tension nearly vanishes in mesophases due to an electric double layer.Comment: 24 pages, 10 figures, to appear in Journal of Physics: Condensed Matte

    Magnetic properties of PrCu2_2 at high pressure

    Full text link
    We report a study of the low-temperature high-pressure phase diagram of the intermetallic compound PrCu2_2, by means of molecular-field calculations and 63,65^{63,65}Cu nuclear-quadrupole-resonance (NQR) measurements under pressure. The pressure-induced magnetically-ordered phase can be accounted for by considering the influence of the crystal electric field on the 4f4f electron orbitals of the Pr3+^{3+} ions and by introducing a pressure-dependent exchange interaction between the corresponding local magnetic moments. Our experimental data suggest that the order in the induced antiferromagnetic phase is incommensurate. The role of magnetic fluctuations both at high and low pressures is also discussed.Comment: 7 pages, 6 figures, submitted to Eur. Phys. J.

    Intermediate states at structural phase transition: Model with a one-component order parameter coupled to strains

    Full text link
    We study a Ginzburg-Landau model of structural phase transition in two dimensions, in which a single order parameter is coupled to the tetragonal and dilational strains. Such elastic coupling terms in the free energy much affect the phase transition behavior particularly near the tricriticality. A characteristic feature is appearance of intermediate states, where the ordered and disordered regions coexist on mesoscopic scales in nearly steady states in a temperature window. The window width increases with increasing the strength of the dilational coupling. It arises from freezing of phase ordering in inhomogeneous strains. No impurity mechanism is involved. We present a simple theory of the intermediate states to produce phase diagrams consistent with simulation results.Comment: 16 pages, 14 figure

    Viscoelastic Effect on Hydrodynamic Relaxation in Polymer Solutions

    Full text link
    The viscoelastic effect on the hydrodynamic relaxation in semidilute polymer solutions is investigated. From the linearized two-fluid model equations, we predict that the dynamical asymmetry coupling between the velocity fluctuations and the viscoelastic stress influences on the hydrodynamic relaxation process, resulting in a wave-number-dependent shear viscosity.Comment: 7pages; To be published in Journal of the Physical Society of Japan,Vol 72,No2,(2003

    Shear flow effects on phase separation of entangled polymer blends

    Get PDF
    We introduce an entanglement model mixing rule for stress relaxation in a polymer blend to a modified Cahn-Hilliard equation of motion for concentration fluctuations in the presence of shear flow. Such an approach predicts both shear-induced mixing and demixing, depending on the relative relaxation times and plateau moduli of the two components

    Binary fluids under steady shear in three dimensions

    Full text link
    We simulate by lattice Boltzmann the steady shearing of a binary fluid mixture with full hydrodynamics in three dimensions. Contrary to some theoretical scenarios, a dynamical steady state is attained with finite correlation lengths in all three spatial directions. Using large simulations we obtain at moderately high Reynolds numbers apparent scaling expon ents comparable to those found by us previously in 2D. However, in 3D there may be a crossover to different behavior at low Reynolds number: accessing this regime requires even larger computational resource than used here.Comment: 4 pages, 3 figure

    Phase separation transition in liquids and polymers induced by electric field gradients

    Full text link
    Spatially uniform electric fields have been used to induce instabilities in liquids and polymers, and to orient and deform ordered phases of block-copolymers. Here we discuss the demixing phase transition occurring in liquid mixtures when they are subject to spatially nonuniform fields. Above the critical value of potential, a phase-separation transition occurs, and two coexisting phases appear separated by a sharp interface. Analytical and numerical composition profiles are given, and the interface location as a function of charge or voltage is found. The possible influence of demixing on the stability of suspensions and on inter-colloid interaction is discussed.Comment: 7 pages, 3 figures. Special issue of the J. Phys. Soc. Ja
    • …
    corecore