330 research outputs found

    The influence of nitrogen and phosphorus on the growth of a diatom Skeletonema costatum (Greville) Cleve

    Get PDF
    Nitrogen and phosphorus requirements of a chain-forming diatom, Skeletonema costatum (Greville) Cleve, collected from Yatsushiro Sea, Japan, were investigated in a laboratory culture experiment. Sodium nitrate and sodium glycerophosphate were used as nitrogen and phosphorus sources, respectively. Cultures were grown in modified Provasoli's ASP2NTA medium (Provasoli et al. 1957) at 25±1°C, light intensity 60 µE mˉ² secˉ¹ and photoperiod 12:12-h, L:D cycle. Optimum growth was observed at nitrate concentrations of 3-10 mglˉ¹ and phosphate concentrations of 1.5-15 mglˉ¹. Adequate growth was also found at the nitrate concentration of up to as high as 300 mglˉ¹. Significantly poorer growth was found at lower nitrate (15 mglˉ¹) concentrations. From the present study, it is concluded that S. costatum can grow well at wide ranges of nitrate concentrations but is sensitive to higher phosphate concentrations

    Physiological observations on a diatom Skeletonema costatum (Greville) Cleve

    Get PDF
    A chain-forming diatom Skeletonema costatum (Greville) Cleve collected from Yatsushiro Sea, Japan was cultured to determine the optimum level of some physico-chemical factors for their growth under laboratory conditions. Filtered and sterilized aged sea water enriched by adding nutrient solution (Provasoli 1968) was used as the culture medium. The plankton could tolerate a wide range of salinities (3-55 ppt). Optimum growth was observed at salinities of 20-35 ppt, temperatures of 20-25°C, light intensities of 80-120µE mˉ² secˉ¹ and pH between 7.5 and 8.0. Growth did not occur at salinities below 3 ppt and at temperatures above 30°C. From the present study, it is concluded that S. costatum was extremely euryhaline and tolerable to very low salinities

    A new method for extracting conodonts and radiolarians from chert with NaOH solution

    Get PDF
    Microfossils are important components of sedi- mentary rocks used for palaeontological, biostratigraphic, palaeoenvironmental and palaeoclimatic investigations. They are usually extracted from rocks using an acid solution, which might vary depending on the embedding rock lithology. Here we propose a new method using common NaOH (sodium hydroxide; soda) to digest cherts (micro- and cryptocrystalline quartz) instead of the standard technique based on HF (hydrofluoric acid). This new method allows the collection of undamaged specimens of different kinds of microfossils, such as conodonts, radiolarians, teeth and dermal scales, the miner- ology of which is still preserved (e.g. biogenic apatite in cono- donts). The use of soda is thus recommended, as it is less dangerous, less expensive, and it better preserves the extracted microfossils both in shape and mineralogy

    The Hyper Suprime-Cam SSP Survey: Overview and Survey Design

    Full text link
    Hyper Suprime-Cam (HSC) is a wide-field imaging camera on the prime focus of the 8.2m Subaru telescope on the summit of Maunakea in Hawaii. A team of scientists from Japan, Taiwan and Princeton University is using HSC to carry out a 300-night multi-band imaging survey of the high-latitude sky. The survey includes three layers: the Wide layer will cover 1400 deg2^2 in five broad bands (grizygrizy), with a 5σ5\,\sigma point-source depth of r26r \approx 26. The Deep layer covers a total of 26~deg2^2 in four fields, going roughly a magnitude fainter, while the UltraDeep layer goes almost a magnitude fainter still in two pointings of HSC (a total of 3.5 deg2^2). Here we describe the instrument, the science goals of the survey, and the survey strategy and data processing. This paper serves as an introduction to a special issue of the Publications of the Astronomical Society of Japan, which includes a large number of technical and scientific papers describing results from the early phases of this survey.Comment: 14 pages, 7 figures, 5 tables. Corrected for a typo in the coordinates of HSC-Wide spring equatorial field in Table

    Extreme Nature of Four Blue-excess Dust-obscured Galaxies Revealed by Optical Spectroscopy

    Get PDF
    We report optical spectroscopic observations of four blue-excess dust-obscured galaxies (BluDOGs) identified by the Subaru Hyper Suprime-Cam. BluDOGs are a subclass of dust-obscured galaxies (DOGs; defined with the extremely red color (i − [22])AB ≥ 7.0; Toba et al., showing a significant flux excess in the optical g and r bands over the power-law fits to the fluxes at the longer wavelengths. Noboriguchi et al. have suggested that BluDOGs may correspond to the blowing-out phase involved in a gas-rich major-merger scenario. However, the detailed properties of BluDOGs are not understood because of the lack of spectroscopic information. In this work, we carry out deep optical spectroscopic observations of four BluDOGs using Subaru/FOCAS and VLT/FORS2. The obtained spectra show broad emission lines with extremely large equivalent widths, and a blue wing in the C iv line profile. The redshifts are between 2.2 and 3.3. The averaged rest-frame equivalent widths of the C iv lines are 160 \ub1 33 \uc5, ∼7 times higher than the average of a typical type 1 quasar. The FWHMs of their velocity profiles are between 1990 and 4470 km s−1, and their asymmetric parameters are 0.05 and 0.25. Such strong C iv lines significantly affect the broadband magnitudes, which are partly the origin of the blue excess seen in the spectral energy distribution of BluDOGs. Their estimated supermassive black hole masses are 1.1 7 108 < M BH/M ⊙ <5.5 7 108. The inferred Eddington ratios of the BluDOGs are higher than 1 (1.1 < λ Edd < 3.8), suggesting that the BluDOGs are in a rapidly evolving phase of supermassive black holes

    Impact of functional studies on exome sequence variant interpretation in early-onset cardiac conduction system diseases

    Get PDF
    Aims The genetic cause of cardiac conduction system disease (CCSD) has not been fully elucidated. Whole-exome sequencing (WES) can detect various genetic variants; however, the identification of pathogenic variants remains a challenge. We aimed to identify pathogenic or likely pathogenic variants in CCSD patients by using WES and 2015 American College of Medical Genetics and Genomics (ACMG) standards and guidelines as well as evaluating the usefulness of functional studies for determining them. Methods and Results We performed WES of 23 probands diagnosed with early-onset (<65 years) CCSD and analyzed 117 genes linked to arrhythmogenic diseases or cardiomyopathies. We focused on rare variants (minor allele frequency < 0.1%) that were absent from population databases. Five probands had protein truncating variants in EMD and LMNA which were classified as “pathogenic” by 2015 ACMG standards and guidelines. To evaluate the functional changes brought about by these variants, we generated a knock-out zebrafish with CRISPR-mediated insertions or deletions of the EMD or LMNA homologs in zebrafish. The mean heart rate and conduction velocities in the CRISPR/Cas9-injected embryos and F2 generation embryos with homozygous deletions were significantly decreased. Twenty-one variants of uncertain significance were identified in 11 probands. Cellular electrophysiological study and in vivo zebrafish cardiac assay showed that 2 variants in KCNH2 and SCN5A, 4 variants in SCN10A, and 1 variant in MYH6 damaged each gene, which resulted in the change of the clinical significance of them from “Uncertain significance” to “Likely pathogenic” in 6 probands. Conclusions Of 23 CCSD probands, we successfully identified pathogenic or likely pathogenic variants in 11 probands (48%). Functional analyses of a cellular electrophysiological study and in vivo zebrafish cardiac assay might be useful for determining the pathogenicity of rare variants in patients with CCSD. SCN10A may be one of the major genes responsible for CCSD. Translational Perspective Whole-exome sequencing (WES) may be helpful in determining the causes of cardiac conduction system disease (CCSD), however, the identification of pathogenic variants remains a challenge. We performed WES of 23 probands diagnosed with early-onset CCSD, and identified 12 pathogenic or likely pathogenic variants in 11 of these probands (48%) according to the 2015 ACMG standards and guidelines. In this context, functional analyses of a cellular electrophysiological study and in vivo zebrafish cardiac assay might be useful for determining the pathogenicity of rare variants, and SCN10A may be one of the major development factors in CCSD

    XQR-30: Black Hole Masses and Accretion Rates of 42 z>6 Quasars

    Full text link
    We present bolometric luminosities, black hole masses and Eddington ratios for 42 luminous quasars at z>6 using high signal-to-noise ratio VLT/X-Shooter spectra, acquired in the enlarged ESO Large Programme XQR-30. In particular, we derive bolometric luminosities from the rest-frame 3000 A, luminosities using a bolometric correction from the literature, and the black hole masses by modelling the spectral regions around the CIV 1549A and the MgII 2798A emission lines, with scaling relations calibrated in the local universe. We find that the black hole masses derived from both emission lines are in the same range, and the scatter of the measurements agrees with expectations from the scaling relations. The MgII-derived masses are between ~(0.8-12) x 10^9 Msun, and the derived Eddington ratios are within ~0.13-1.73, with a mean (median) of 0.84 (0.72). By comparing the total sample of quasars at z>5.8, from this work and from the literature, to a bolometric luminosity distribution-matched sample at z~1.5, we find that quasars at high redshift host slightly less massive black holes which accrete slightly more rapidly than at lower-z, with a difference in the mean Eddington ratios of the two samples of ~0.27, in agreement with recent literature work.Comment: 9 pages; 5 figures; accepted for publication in A&
    corecore