212 research outputs found

    Evaluation of Talbot's Safety Zone of Infusion Volume and Osmolality in Infusion Therapy for Decompensated Liver Cirrhosis

    Get PDF
    Problems with infusion therapy for correcting fluid and sodium imbalance in decompensated liver cirrhosis (DLC) were investigated by establishing the safety zone of Talbot et al. for parenteral fluid therapy in 4 DLC patients infused with over 900 ml of fluid each day for at least 9 days. The safety zone was different in each case. The safe infusion volume decreased and the safe electrolyte concentration shifted to a lower osmolality when there was ascites with renal failure than ascites without renal failure. Infusion therapy was performed without deterioration of the water and sodium balance in those patients whose infusion volume and fluid osmolality were in the safety zone. In contrast, ascites retention increased and peripheral edema appeared in patients whose infusion volume and osmolality were out of the safety zone. Therefore, the safety zone should be determined repeatedly during infusion therapy.</p

    Cosmic Galaxy-IGM HI Relation at z23{\it{z}}\sim 2-3 Probed in the COSMOS/UltraVISTA 1.61.6 deg2^2 Field

    Full text link
    We present spatial correlations of galaxies and IGM HI in the COSMOS/UltraVISTA 1.62 deg2^2 field. Our data consist of 13,415 photo-zz galaxies at z23z\sim2-3 with Ks<23.4K_s<23.4 and the Lyα\alpha forest absorptions in the background quasar spectra selected from SDSS data with no signature of damped Lyα\alpha system contamination. We estimate a galaxy overdensity δgal\delta_{gal} in an impact parameter of 2.5 pMpc, and calculate the Lyα\alpha forest fluctuations δF\delta_{\langle F\rangle} whose negative values correspond to the strong Lyα\alpha forest absorptions. We identify weak evidence of an anti-correlation between δgal\delta_{gal} and δF\delta_{\langle F\rangle} with a Spearman's rank correlation coefficient of 0.39-0.39 suggesting that the galaxy overdensities and the Lyα\alpha forest absorptions positively correlate in space at the 90%\sim90\% confidence level. This positive correlation indicates that high-zz galaxies exist around an excess of HI gas in the Lyα\alpha forest. We find four cosmic volumes, dubbed AobsA_{obs}-DobsD_{obs}, that have extremely large (small) values of δgal0.8\delta_{gal} \simeq0.8 (1-1) and δF\delta_{\langle F\rangle} 0.1\simeq0.1 (0.4-0.4), three out of which, BobsB_{obs}-DobsD_{obs}, significantly depart from the correlation, and weaken the correlation signal. We perform cosmological hydrodynamical simulations, and compare with our observational results. Our simulations reproduce the correlation, agreeing with the observational results. Moreover, our simulations have model counterparts of AobsA_{obs}-DobsD_{obs}, and suggest that the observations pinpoint, by chance, a galaxy overdensity like a proto-cluster, gas filaments lying on the sightline, a large void, and orthogonal low-density filaments. Our simulations indicate that the significant departures of BobsB_{obs}-DobsD_{obs} are produced by the filamentary large-scale structures and the observation sightline effects.Comment: 14 pages, 12 figures. Accepted for publication in Ap

    フォン・ヴィレブランド因子の機能を調節することで、マウスの急性腎虚血再灌流障害を緩和できる

    Get PDF
    Acute kidney injury (AKI), an abrupt loss of renal function, is often seen in clinical settings and may become fatal. In addition to its hemostatic functions, von Willebrand factor (VWF) is known to play a role in cross-talk between inflammation and thrombosis. We hypothesized that VWF may be involved in the pathophysiology of AKI, major causes of which include insufficient renal circulation or inflammatory cell infiltration in the kidney. To test this hypothesis, we studied the role of VWF in AKI using a mouse model of acute ischemia-reperfusion (I/R) kidney injury. We analyzed renal function and blood flow in VWF-gene deleted (knock-out; KO) mice. The functional regulation of VWF by ADAMTS13 or a function-blocking anti-VWF antibody was also evaluated in this pathological condition. Greater renal blood flow and lower serum creatinine were observed after reperfusion in VWF-KO mice compared with wild-type (WT) mice. Histological analysis also revealed a significantly lower degree of tubular damage and neutrophil infiltration in kidney tissues of VWF-KO mice. Both human recombinant ADAMTS13 and a function-blocking anti-VWF antibody significantly improved renal blood flow, renal function and histological findings in WT mice. Our results indicate that VWF plays a role in the pathogenesis of AKI. Proper functional regulation of VWF may improve the microcirculation and vessel function in the kidney, suggesting a novel therapeutic option against AKI.博士(医学)・甲第744号・令和2年3月16日© The Author(s) 2019. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
    corecore