8 research outputs found
Disorders of sex development : insights from targeted gene sequencing of a large international patient cohort
Background: Disorders of sex development (DSD) are congenital conditions in which chromosomal, gonadal, or phenotypic sex is atypical. Clinical management of DSD is often difficult and currently only 13% of patients receive an accurate clinical genetic diagnosis. To address this we have developed a massively parallel sequencing targeted DSD gene panel which allows us to sequence all 64 known diagnostic DSD genes and candidate genes simultaneously.
Results: We analyzed DNA from the largest reported international cohort of patients with DSD (278 patients with 46, XY DSD and 48 with 46, XX DSD). Our targeted gene panel compares favorably with other sequencing platforms. We found a total of 28 diagnostic genes that are implicated in DSD, highlighting the genetic spectrum of this disorder. Sequencing revealed 93 previously unreported DSD gene variants. Overall, we identified a likely genetic diagnosis in 43% of patients with 46, XY DSD. In patients with 46, XY disorders of androgen synthesis and action the genetic diagnosis rate reached 60%. Surprisingly, little difference in diagnostic rate was observed between singletons and trios. In many cases our findings are informative as to the likely cause of the DSD, which will facilitate clinical management.
Conclusions: Our massively parallel sequencing targeted DSD gene panel represents an economical means of improving the genetic diagnostic capability for patients affected by DSD. Implementation of this panel in a large cohort of patients has expanded our understanding of the underlying genetic etiology of DSD. The inclusion of research candidate genes also provides an invaluable resource for future identification of novel genes
Analysis of variants in <i>GATA4 </i>and<i> FOG2/ZFPM2</i> demonstrates benign contribution to 46,XY disorders of sex development
BACKGROUND: GATA-binding protein 4 (GATA4) and Friend of GATA 2 protein (FOG2, also known as ZFPM2) form a heterodimer complex that has been shown to influence transcription of genes in a number of developmental systems. Recent evidence has also shown these genes play a role in gonadal sexual differentiation in humans. Previously we identified four variants in GATA4 and an unexpectedly large number of variants in ZFPM2 in a cohort of individuals with 46,XY Differences/Disorders of Sex Development (DSD) (Eggers et al, Genome Biology, 2016; 17: 243). METHOD: Here, we review variant curation and test the functional activity of GATA4 and ZFPM2 variants. We assess variant transcriptional activity on gonadal specific promoters (Sox9 and AMH) and variant protein-protein interactions. RESULTS: Our findings support that the majority of GATA4 and ZFPM2 variants we identified are benign in their contribution to 46,XY DSD. Indeed, only one variant, in the conserved N-terminal zinc finger of GATA4, was considered pathogenic, with functional analysis confirming differences in its ability to regulate Sox9 and AMH and in protein interaction with ZFPM2. CONCLUSIONS: Our study helps define the genetic factors contributing to 46,XY DSD and suggests that the majority of variants we identified in GATA4 and ZFPM2/FOG2 are not causative
Additional file 2: Figure S1. of Disorders of sex development: insights from targeted gene sequencing of a large international patient cohort
DSD gene variants in different global regions. DSD gene variants among the international cohort of 46,XY DSD patients. For ease of analysis, countries were grouped together into regions: Asia comprises Indonesia (97), Pakistan (25), Vietnam (35), Cambodia (16), India (1), a total of 174 patients ; Europe comprises the Netherlands (38), Austria (15), Belgium (6), and Italy (2), a total of 61 patients; and AUS & NZL comprises Australia (83) and New Zealand (7), a total of 90 patients. All curated variants are shown; those which have been curated and called pathogenic, likely pathogenic, and VUS. In the cohort from Asia, 35% of the patients were found to have a diagnostic variant (pathogenic or likely pathogenic), while this was 44% for Europe and 45% for AUS/NZL. Two patients from Canada were not included in the diagram. (PPTX 158 kb
Disorders of sex development: Insights from targeted gene sequencing of a large international patient cohort
Background: Disorders of sex development (DSD) are congenital conditions in which chromosomal, gonadal, or phenotypic sex is atypical. Clinical management of DSD is often difficult and currently only 13% of patients receive an accurate clinical genetic diagnosis. To address this we have developed a massively
Additional file 1: Table S1. of Disorders of sex development: insights from targeted gene sequencing of a large international patient cohort
DSD gene variants. Each variant found in a diagnostic gene (after the filtering and curation process) is shown. In some cases where the gene is inherited in an autosomal recessive manner, two variants are grouped together. Inheritance has been indicated where familial samples were available: negative indicates negative for variant and N/A sample not available. De novo events have only been noted where both parental samples were available and found to be negative for the change. Previously reported refers to a variant being described in either ClinVar, HGMD, or a publication in a peer-reviewed journal via a PubMed search. Variants were classified consistent with previous MPS publications of DSD cohorts [8, 10] which were based on ACMG guidelines [15]. VUS were called for three reasons: 1 = fits phenotype but predicted to be benign; 2 = damaging but doesn’t fit phenotype; or 3 = variant in the AR repetitive region. Patients marked with an asterisk were identified to have two or more diagnostic gene variants. Null variants (frameshifts, splice sites mutations, and premature stop codons) are shown in bold. Patients have been classified based on clinical notes provided, according to the recommended classification of DSD in the Chicago consensus report. Classifications: CGD complete gonadal dysgenesis, DASA disorders of androgen synthesis or action, DSD DSD of “unknown” origin; hypospadias, LCH Leydig cell hypoplasia, OT ovotesticular DSD, PGD partial gonadal dysgenesis, PMDS persistent Müllerian duct syndrome; syndromic, T testicular DSD. Related affected individuals are indicated. File is in Excel spreadsheet format. (XLSX 47 kb
Additional file 1: Table S1. of Disorders of sex development: insights from targeted gene sequencing of a large international patient cohort
DSD gene variants. Each variant found in a diagnostic gene (after the filtering and curation process) is shown. In some cases where the gene is inherited in an autosomal recessive manner, two variants are grouped together. Inheritance has been indicated where familial samples were available: negative indicates negative for variant and N/A sample not available. De novo events have only been noted where both parental samples were available and found to be negative for the change. Previously reported refers to a variant being described in either ClinVar, HGMD, or a publication in a peer-reviewed journal via a PubMed search. Variants were classified consistent with previous MPS publications of DSD cohorts [8, 10] which were based on ACMG guidelines [15]. VUS were called for three reasons: 1 = fits phenotype but predicted to be benign; 2 = damaging but doesn’t fit phenotype; or 3 = variant in the AR repetitive region. Patients marked with an asterisk were identified to have two or more diagnostic gene variants. Null variants (frameshifts, splice sites mutations, and premature stop codons) are shown in bold. Patients have been classified based on clinical notes provided, according to the recommended classification of DSD in the Chicago consensus report. Classifications: CGD complete gonadal dysgenesis, DASA disorders of androgen synthesis or action, DSD DSD of “unknown” origin; hypospadias, LCH Leydig cell hypoplasia, OT ovotesticular DSD, PGD partial gonadal dysgenesis, PMDS persistent Müllerian duct syndrome; syndromic, T testicular DSD. Related affected individuals are indicated. File is in Excel spreadsheet format. (XLSX 47 kb