519 research outputs found
QuasiSupersymmetric Solitons of Coupled Scalar Fields in Two Dimensions
We consider solitonic solutions of coupled scalar systems, whose Lagrangian
has a potential term (quasi-supersymmetric potential) consisting of the square
of derivative of a superpotential. The most important feature of such a theory
is that among soliton masses there holds a Ritz-like combination rule (e.g.
), instead of the inequality ()
which is a stability relation generally seen in N=2 supersymmetric theory. The
promotion from N=1 to N=2 theory is considered.Comment: 18 pages, 5 figures, uses epsbox.st
Selective Decoding in Associative Memories Based on Sparse-Clustered Networks
Associative memories are structures that can retrieve previously stored
information given a partial input pattern instead of an explicit address as in
indexed memories. A few hardware approaches have recently been introduced for a
new family of associative memories based on Sparse-Clustered Networks (SCN)
that show attractive features. These architectures are suitable for
implementations with low retrieval latency, but are limited to small networks
that store a few hundred data entries. In this paper, a new hardware
architecture of SCNs is proposed that features a new data-storage technique as
well as a method we refer to as Selective Decoding (SD-SCN). The SD-SCN has
been implemented using a similar FPGA used in the previous efforts and achieves
two orders of magnitude higher capacity, with no error-performance penalty but
with the cost of few extra clock cycles per data access.Comment: 4 pages, Accepted in IEEE Global SIP 2013 conferenc
VLSI Implementation of Deep Neural Network Using Integral Stochastic Computing
The hardware implementation of deep neural networks (DNNs) has recently
received tremendous attention: many applications in fact require high-speed
operations that suit a hardware implementation. However, numerous elements and
complex interconnections are usually required, leading to a large area
occupation and copious power consumption. Stochastic computing has shown
promising results for low-power area-efficient hardware implementations, even
though existing stochastic algorithms require long streams that cause long
latencies. In this paper, we propose an integer form of stochastic computation
and introduce some elementary circuits. We then propose an efficient
implementation of a DNN based on integral stochastic computing. The proposed
architecture has been implemented on a Virtex7 FPGA, resulting in 45% and 62%
average reductions in area and latency compared to the best reported
architecture in literature. We also synthesize the circuits in a 65 nm CMOS
technology and we show that the proposed integral stochastic architecture
results in up to 21% reduction in energy consumption compared to the binary
radix implementation at the same misclassification rate. Due to fault-tolerant
nature of stochastic architectures, we also consider a quasi-synchronous
implementation which yields 33% reduction in energy consumption w.r.t. the
binary radix implementation without any compromise on performance.Comment: 11 pages, 12 figure
- …