15 research outputs found

    Experimental measurements and CFD modelling of hydroxyapatite scaffolds in perfusion bioreactors for bone regeneration

    Get PDF
    In the field of bone tissue engineering, particular interest is devoted to the development of 3D cultures to study bone cell proliferation under conditions similar to in vivo ones, e.g. by artificially producing mechanical stresses promoting a biological response (mechanotransduction). Of particular relevance in this context are the effects generated by the flow shear stress, which governs the nutrients delivery rate to the growing cells and which can be controlled in perfusion reactors. However, the introduction of 3D scaffolds complicates the direct measurement of the generated shear stress on the adhered cells inside the matrix, thus jeopardizing the potential of using multi-dimensional matrices. In this study, an anisotropic hydroxyapatite-based set of scaffolds is considered as a 3D biomimetic support for bone cells deposition and growth. Measurements of sample-specific flow resistance are carried out using a perfusion system, accompanied by a visual characterization of the material structure. From the obtained results, a subset of three samples is reproduced using 3D-Computational Fluid Dynamics (CFD) techniques and the models are validated by virtually replicating the flow resistance measurement. Once a good agreement is found, the analysis of flow-induced shear stress on the inner B-HA structure is carried out based on simulation results. Finally, a statistical analysis leads to a simplified expression to correlate the flow resistance with the entity and extensions of wall shear stress inside the scaffold. The study applies CFD to overcome the limitations of experiments, allowing for an advancement in multi-dimensional cell cultures by elucidating the flow conditions in 3D reactors

    Liquid flow in scaffold derived from natural source: experimental observations and biological outcome

    Get PDF
    This study investigates the biological effects on a 3D scaffold based on hydroxyapatite cultured with MC3T3 osteoblasts in response to flow-induced shear stress (FSS). The scaffold adopted here (B-HA) derives from the biomorphic transformation of natural wood and its peculiar channel geometry mimics the porous structure of the bone. From the point of view of fluid dynamics, B-HA can be considered a network of micro-channels, intrinsically offering the advantages of a microfluidic system. This work, for the first time, offers a description of the fluid dynamic properties of the B-HA scaffold, which are strongly connected to its morphology. These features are necessary to determine the FSS ranges to be applied during in vitro studies to get physiologically relevant conditions. The selected ranges of FSS promoted the elongation of the attached cells along the flow direction and early osteogenic cell differentiation. These data confirmed the ability of B-HA to promote the differentiation process along osteogenic lineage. Hence, such a bioactive and naturally derived scaffold can be considered as a promising tool for bone regeneration applications

    Calibration of robot tool centre point using camera-based system

    No full text
    Robot Tool Centre Point (TCP) calibration problem is of great importance for a number of industrial applications, and it is well known both in theory and in practice. Although various techniques have been proposed for solving this problem, they mostly require tool jogging or long processing time, both of which affect process performance by extending cycle time. This paper presents an innovative way of TCP calibration using a set of two cameras. The robot tool is placed in an area where images in two orthogonal planes are acquired using cameras. Using robust pattern recognition, even deformed tool can be identified on images, and information about its current position and orientation forwarded to control unit for calibration. Compared to other techniques, test results show significant reduction in procedure complexity and calibration time. These improvements enable more frequent TCP checking and recalibration during production, thus improving the product quality

    Integrated eDNA metabarcoding and morphological analyses assess spatio-temporal patterns of airborne fungal spores

    Get PDF
    Fungi represent relevant allergens and plant pathogens that can disperse on long ranges, potentially producing severe consequences on public health and agriculture. Up to 11% of the bioaerosol particles are fungal spores and mycelium fragments. Estimation of fungal species diversity in time and space is decisive but may be biased by abiotic conditions and sampling methods. Traditional morphological analyses of fungal spores have been widely applied in aerobiology in the past, while recently eDNA metabarcoding can complement these studies. Here, we used both morphological analysis (spore count and taxon identification) and high-throughput sequencing to disentangle spatio-temporal variation of fungi across Northern and Central Italy and to evaluate the detection efficiency of the two approaches. Our results showed that eDNA metabarcoding detects about three times more genera and has a higher detection efficiency than the morphological analyses. However, the efficiency is high in both spore count and eDNA metabarcoding methods when the most abundant or the rarest genera are considered but it can substantially vary between the two approaches when moderately abundant genera are analyzed. Furthermore, morphological spore determination resulted in higher variance explained by PERMANOVA analysis with respect to eDNA metabarcoding (26% and 13%, respectively), which leads to a better spatio-temporal characterization of the fungal genera. As both morphological analyses and eDNA metabarcoding methods capture significant interactions between seasons and sites, they could be preferably used as complementing approaches to reliably study airborne fungal diversity and variation

    Steering and Control of Miniaturized Untethered Soft Magnetic Grippers with Haptic Assistance

    Get PDF
    Untethered miniature robotics have recently shown promising results in several scenarios at the microscale, such as targeted drug delivery, microassembly, and biopsy procedures. However, the vast majority of these small-scale robots have very limited manipulation capabilities, and none of the steering systems currently available enables humans to intuitively and effectively control dexterous miniaturized robots in a remote environment. In this paper, we present an innovative microteleoperation system with haptic assistance for the intuitive steering and control of miniaturized self-folding soft magnetic grippers in 2-D space. The soft grippers can be wirelessly positioned using weak magnetic fields and opened/closed by changing their temperature. An image-guided algorithm tracks the position of the controlled miniaturized gripper in the remote environment. A haptic interface provides the human operator with compelling haptic sensations about the interaction between the gripper and the environment as well as enables the operator to intuitively control the target position and grasping configuration of the gripper. Finally, magnetic and thermal control systems regulate the position and grasping configuration of the gripper. The viability of the proposed approach is demonstrated through two experiments involving 26 human subjects. Providing haptic stimuli elicited statistically significant improvements in the performance of the considered navigation and micromanipulation tasks.Note to Practitioners - The ability to accurately and intuitively control the motion of miniaturized grippers in remote environments can open new exciting possibilities in the fields of minimally invasive surgery, micromanipulation, biopsy, and drug delivery. This paper presents a microteleoperation system with haptic assistance through which a clinician can easily control the motion and open/close capability of miniaturized wireless soft grippers. It introduces the underlying autonomous magnetic and thermal control systems, their interconnection with the master haptic interface, and an extensive evaluation in two real-world scenarios: 1) following of a predetermined trajectory and 2) pick-and-place task of a microscopic object.</p

    Evaluation of an electromagnetic system with haptic feedback for control of untethered, soft grippers affected by disturbances

    Get PDF
    Current wireless, small-scale robots have restricted manipulation capabilities, and limited intuitive tools to control their motion. This paper presents a novel teleoperation system with haptic feedback for the control of untethered soft grippers. The system is able to move and open/close the grippers by regulating the magnetic field and temperature in the workspace. Users can intuitively control the grippers using a grounded haptic interface, that is also capable of providing compelling force feedback information as the gripper interacts with the environment. The magnetic closed-loop control algorithm is designed starting from a Finite Element Model analysis. The electromagnetic model used is validated by a measurement of the magnetic field with a resolution of 0.1 mT and sampling rate of 6.8Ă—106 samples/m2. The system shows an accuracy in positioning the gripper of 0.08 mm at a velocity of 0.81 mm/s. The robustness of the control and tracking algorithms are tested by spraying the workspace with water drops that cause glares and related disturbances of up to 0.41 mm

    Steering and Control of Miniaturized Untethered Soft Magnetic Grippers With Haptic Assistance

    Get PDF
    International audienceUntethered miniature robotics have recently shown promising results in several scenarios at the microscale, such as targeted drug delivery, microassembly, and biopsy procedures. However, the vast majority of these small-scale robots have very limited manipulation capabilities, and none of the steering systems currently available enable humans to intuitively and effectively control dexterous miniaturized robots in a remote environment. In this paper, we present an innovative micro teleop-eration system with haptic assistance for the intuitive steering and control of miniaturized self-folding soft magnetic grippers in 2-dimensional space. The soft grippers can be wirelessly positioned using weak magnetic fields and opened/closed by changing their temperature. An image-guided algorithm tracks the position of the controlled miniaturized gripper in the remote environment. A haptic interface provides the human operator with compelling haptic sensations about the interaction between the gripper and the environment, as well as enabling the operator to intuitively control the target position and grasping configuration of the gripper. Finally, magnetic and thermal control systems regulate the position and grasping configuration of the gripper. The viability of the proposed approach is demonstrated through two experiments involving twenty-six human subjects. Providing haptic stimuli elicited statistically significant improvements in the performance of the considered navigation and micromanipulation tasks. Note to Practitioners—The ability to accurately and intuitively control the motion of miniaturized grippers in remote environments can open new exciting possibilities in the fields of minimally-invasive surgery, micromanipulation, biopsy, and drug delivery. This article presents a micro teleoperation system with haptic assistance through which a clinician can easily control the motion and open/close capability of miniaturized wireless soft grippers. It introduces the underlying autonomous magnetic and thermal control systems, their interconnection with the master haptic interface, and an extensive evaluation in two real-world C. Pacchierotti is affiliated with CNRS at Irisa and Inria Rennes, France. F. Ongaro, F. van den Brink, and S. Misra are affiliated with the Surgical The authors also thank Dr. Stefano Scheggi for his help in setting up the tracking system. scenarios: following of a predetermined trajectory, and pick-and-place of a microscopic object
    corecore