10,590 research outputs found
Cooling and recombination processes in cometary plasma
The ion electron plasma in comets is examined for cooling processes which result from its interactions with the neutral coma. A cometary coma model is formulated that is composed predominantly of H2O and its decomposition products where electrons are cooled in a variety of processes at rates varying with energy. It is shown that solar plasma plus accumulated cometary ions and electrons is affected very strongly as it flows into the coma. The electrons are rapidly cooled and all but some 10% of the ions undergo charge exchange. Photodissociation of H2O is assumed where ion electron recombination is the dominant loss process
Kinetic Equation for a Plasma and Its Application to High-frequency Conductivity
Kinetic equation for inhomogenious nonisotropic plasma and application to high frequency conductivit
Anomalous microwave response of high-temperature superconducting thin-film microstrip resonator in weak dc magnetic fields
We have studied an anomalous microwave (mw) response of superconducting
YBa_{2}Cu_{3}O_{7-delta} (YBCO) microstrip resonators in the presence of a weak
dc magnetic field, H_{dc}. The surface resistance (R_{s}) and reactance (X_{s})
show a correlated non-monotonic behaviour as a function of H_{dc}. R_{s} and
X_{s} were found to initially decrease with elevated H_{dc} and then increase
after H_{dc} reaches a crossover field, H_{c}, which is independent of the
amplitude and frequency of the input mw signal within the measurements. The
frequency dependence of R_{s} is almost linear at fixed H_{dc} with different
magnitudes (H_{c}). The impedance plane analysis
demonstrates that r_{H}, which is defined as the ratio of the change in
R_{s}(H_{dc}) and that in X_{s}(H_{dc}), is about 0.6 at H_{dc}<H_{c} and 0.1
at H_{dc}>H_{c}. The H_{dc} dependence of the surface impedance is
qualitatively independent of the orientation of H_{dc}.Comment: REVTex 3.1, 5 pages, 6 EPS figures, submitted to Physica
Anti-fouling double-skinned forward osmosis membrane with zwitterionic brush for oily wastewater treatment
Despite its attractive features for energy saving separation, the performance of forward osmosis (FO) has been restricted by internal concentration polarization and fast fouling propensity that occur in the membrane sublayer. These problems have significantly affected the membrane performance when treating highly contaminated oily wastewater. In this study, a novel double-skinned FO membrane with excellent anti-fouling properties has been developed for emulsified oil-water treatment. The double-skinned FO membrane comprises a fully porous sublayer sandwiched between a highly dense polyamide (PA) layer for salt rejection and a fairly loose dense bottom zwitterionic layer for emulsified oil particle removal. The top dense PA layer was synthesized via interfacial polymerization meanwhile the bottom layer was made up of a zwitterionic polyelectrolyte brush-(poly(3-(N-2-methacryloxyethyl-N,N-dimethyl) ammonatopropanesultone), abbreviated as PMAPS layer. The resultant double-skinned membrane exhibited a high water flux of 13.7 ± 0.3 L/m2.h and reverse salt transport of 1.6 ± 0.2 g/m2.h under FO mode using 2 M NaCl as the draw solution and emulsified oily solution as the feed. The double-skinned membrane outperforms the single-skinned membrane with much lower fouling propensity for emulsified oil-water separation
The Concentration of Manganese, Copper, Zinc, Lead and Thorium in Sediments of Paka Estuary,Terengganu, Malaysia
14 cm cores sediments from the Paka River were analyzed for Mn, Cu, Zn, Pb
and Th using the inductively coupled plasma mass spectrometer (ICP-MS).
Generally, the concentrations of all elements decreased with depth and have
significantly higher concentration at the surface depth of the core. The
concentration of Mn and Cu have average value of 151.1 ± 59.1 mg/g dry
weights and 29.2 ± 6.9 mg/g dry weights, while Zn and Pb averaged at 72.5 ±
15.5 mg/g dry weights and 54.9 ± 2.5 mg/g dry weights, respectively. Th were
slightly varied widely and ranged from 0.6 mg/g dry weights to 1.4 mg/g dry
weights. In this study, only Mn and Th have enrichment factor (EF) values close
to unity and may therefore be considered to be predominantly terrigenous in
origin. On the contrary, the higher EF values found for Cu, Zn and Pb indicate
that these metals might have some influenced from the anthropogenic inpu
Empires and Percolation: Stochastic Merging of Adjacent Regions
We introduce a stochastic model in which adjacent planar regions merge
stochastically at some rate , and observe analogies with the
well-studied topics of mean-field coagulation and of bond percolation. Do
infinite regions appear in finite time? We give a simple condition on
for this {\em hegemony} property to hold, and another simple condition for it
to not hold, but there is a large gap between these conditions, which includes
the case . For this case, a non-rigorous analytic
argument and simulations suggest hegemony.Comment: 13 page
Electromagnetic radiative corrections in parity-violating electron-proton scattering
QED radiative corrections have been calculated for leptonic and hadronic
variables in parity-violating elastic ep scattering. For the first time, the
calculation of the asymmetry in the elastic radiative tail is performed without
the peaking-approximation assumption in hadronic variables configuration. A
comparison with the PV-A4 data validates our approach. This method has been
also used to evaluate the radiative corrections to the parity-violating
asymmetry measured in the G0 experiment. The results obtained are here
presented.Comment: 12 pages, 11 figure
Effect of dead space on avalanche speed
The effects of dead space (the minimum distance travelled by a carrier before acquiring enough energy to impact ionize) on the current impulse response and bandwidth of an avalanche multiplication process are obtained from a numerical model that maintains a constant carrier velocity but allows for a random distribution of impact ionization path lengths. The results show that the main mechanism responsible for the increase in response time with dead space is the increase in the number of carrier groups, which qualitatively describes the length of multiplication chains. When the dead space is negligible, the bandwidth follows the behavior predicted by Emmons but decreases as dead space increase
- …