17 research outputs found

    The critical need for pooled data on coronavirus disease 2019 in African children : an AFREhealth call for action through multicountry research collaboration

    Get PDF
    Globally, there are prevailing knowledge gaps in the epidemiology, clinical manifestations, and outcomes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection among children and adolescents; and these gaps are especially wide in African countries. The availability of robust age-disaggregated data is a critical first step in improving knowledge on disease burden and manifestations of coronavirus disease 2019 (COVID-19) among children. Furthermore, it is essential to improve understanding of SARS-CoV-2 interactions with comorbidities and coinfections such as human immunodeficiency virus (HIV), tuberculosis, malaria, sickle cell disease, and malnutrition, which are highly prevalent among children in sub-Saharan Africa. The African Forum for Research and Education in Health (AFREhealth) COVID-19 Research Collaboration on Children and Adolescents is conducting studies across Western, Central, Eastern, and Southern Africa to address existing knowledge gaps. This consortium is expected to generate key evidence to inform clinical practice and public health policy-making for COVID-19 while concurrently addressing other major diseases affecting children in African countries.The US National Institutes of Health (NIH)/ Fogarty International Centre (FIC) to the African Forum for Research and Education in Health (AFREhealth).https://academic.oup.com/cidam2022Paediatrics and Child Healt

    Changes in preterm birth and stillbirth during COVID-19 lockdowns in 26 countries

    Get PDF
    Funding Information: M.B.A. holds a Tier 2 Canada Research Chair in the Developmental Origins of Chronic Disease at the University of Manitoba and is a Fellow in the Canadian Institutes for Advanced Research (CIFAR) Humans and the Microbiome Program. Her effort on this project was partly supported by HDR UK and ICODA. K.K.C.M. declares support from The Innovation and Technology Commission of the Hong Kong Special Administrative Region Government, and Hong Kong Research Grants Council Collaborative Research Fund Coronavirus Disease (COVID-19) and Novel Infectious Disease Research Exercise (Ref: C7154-20G) and grants from C W Maplethorpe Fellowship, National Institute of Health Research UK, European Commission Framework Horizon 2020 and has consulted for IQVIA Ltd. A.S. is supported by ICODA and HDR UK, and has received a research grant from HDR UK to the BREATHE Hub. He participates on the Scottish and UK Government COVID-19 Advisory Committees, unremunerated. S.J.S. is supported by a Wellcome Trust Clinical Career Development Fellowship (209560/Z/17/Z) and HDR UK, and has received personal fees from Hologic and Natera outside the submitted work. D.B. is supported by a National Health and Medical Research Council (Australia) Investigator Grant (GTN1175744). I.C.K.W. declares support from The Innovation and Technology Commission of the Hong Kong Special Administrative Region Government, and Hong Kong Research Grants Council Collaborative Research Fund Coronavirus Disease (COVID-19) and Novel Infectious Disease Research Exercise (Ref: C7154-20G), and grants from Hong Kong Research Grant Council, National Institute of Health Research UK, and European Commission Framework Horizon 2020. H.Z. is supported by a UNSW Scientia Program Award and reports grants from European Commission Framework Horizon 2020, Icelandic Centre for Research, and Australia’s National Health and Medical Research Council. H.Z. was an employee of the UNSW Centre for Big Data Research in Health, which received funding from AbbVie Australia to conduct research, unrelated to the current study. I.I.A.A., C.D.A., K.A., A.I.A., L.C., S.S., G.E.-G., O.W.G., L. Huicho, S.H., A.K., K.L., V.N., I.P., N.R.R., T.R., T.A.H.R., V.L.S., E.M.S., L.T., R.W. and H.Z. received funding from HDRUK (grant #2020.106) to support data collection for the iPOP study. K.H., R.B., S.O.E., A.R.-P. and J.H. receive salary from ICODA. M.B. received trainee funding from HDRUK (grant #2020.106). J.E.M. received trainee funding from HDRUK (grant #2020.109). Other relevant funding awarded to authors to conduct research for iPOP include: M.G. received funding from THL, Finnish Institute for Health and Welfare to support data collection. K.D. received funding from EDCTP RIA2019 and HDRUK (grant #2020.106) to support data collection. R.B. received funding from Alzheimer’s Disease Data Initiative and ICODA for the development of federated analysis. A.D.M. received funding from HDR UK who receives its funding from the UK Medical Research Council, Engineering and Physical Sciences Research Council, Economic and Social Research Council, Department of Health and Social Care (England), Chief Scientist Office of the Scottish Government Health and Social Care Directorates, Health and Social Care Research and Development Division (Welsh Government), Public Health Agency (Northern Ireland), British Heart Foundation (BHF) and the Wellcome Trust; and Administrative Data Research UK, which is funded by the Economic and Social Research Council (grant ES/S007393/1). N.A. received funding from the National Institutes of Health (R35GM138353). O.S received funding from NordForsk (grant #105545). The remaining authors declare no competing interests. Funding Information: Funding and in-kind support: This work was supported by the International COVID-19 Data Alliance (ICODA), an initiative funded by the Bill and Melinda Gates Foundation and Minderoo as part of the COVID-19 Therapeutics Accelerator and convened by Health Data Research (HDR) UK, in addition to support from the HDR UK BREATHE Hub. Several ICODA partners contributed to the study, including: Cytel (statistical support), the Odd Group (data visualization) and Aridhia Informatics (development of federated analysis using a standardized protocol ([Common API] https://github.com/federated-data-sharing/ ) to be used in future work). Additional contributors: We acknowledge the important contributions from the following individuals: A. C. Hennemann and D. Suguitani (patient partners from Prematuridade: Brazilian Parents of Preemies’ Association, Porto Alegre, Brazil); N. Postlethwaite (implementation of processes supporting the trustworthy collection, governance and analysis of data from ICODA, HDR UK, London, UK); A. S. Babatunde (led data acquisition from University of Uyo Teaching Hospital, Uyo, Nigeria); N. Silva (data quality, revision and visualization assessment from Methods, Analytics and Technology for Health (M.A.T.H) Consortium, Belo Horizonte, Brazil); J. Söderling (data management from the Karolinska Institutet, Stockholm, Sweden). We also acknowledge the following individuals who assisted with data collection efforts: R. Goemaes (Study Centre for Perinatal Epidemiology (SPE), Brussels, Belgium); C. Leroy (Le Centre d'Épidémiologie Périnatale (CEpiP), Brussels, Belgium); J. Gamba and K. Ronald (St. Francis Nsambya Hospital, Kampala, Uganda); M. Heidarzadeh (Tabriz Medical University, Tabriz, Iran); M. J. Ojeda (Pontificia Universidad Católica de Chile, Santiago, Chile); S. Nangia (Lady Hardinge Medical College, New Delhi, India); C. Nelson, S. Metcalfe and W. Luo (Maternal Infant Health Section of the Public Health Agency of Canada, Ottawa, Canada); K. Sitcov (Foundation for Health Care Quality, Seattle, United States); A. Valek (Semmelweis University, Budapest, Hungary); M. R. Yanlin Liu (Mater Data and Analytics, Brisbane, Australia). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. Funding Information: Funding and in-kind support: This work was supported by the International COVID-19 Data Alliance (ICODA), an initiative funded by the Bill and Melinda Gates Foundation and Minderoo as part of the COVID-19 Therapeutics Accelerator and convened by Health Data Research (HDR) UK, in addition to support from the HDR UK BREATHE Hub. Several ICODA partners contributed to the study, including: Cytel (statistical support), the Odd Group (data visualization) and Aridhia Informatics (development of federated analysis using a standardized protocol ([Common API] https://github.com/federated-data-sharing/) to be used in future work). Additional contributors: We acknowledge the important contributions from the following individuals: A. C. Hennemann and D. Suguitani (patient partners from Prematuridade: Brazilian Parents of Preemies’ Association, Porto Alegre, Brazil); N. Postlethwaite (implementation of processes supporting the trustworthy collection, governance and analysis of data from ICODA, HDR UK, London, UK); A. S. Babatunde (led data acquisition from University of Uyo Teaching Hospital, Uyo, Nigeria); N. Silva (data quality, revision and visualization assessment from Methods, Analytics and Technology for Health (M.A.T.H) Consortium, Belo Horizonte, Brazil); J. Söderling (data management from the Karolinska Institutet, Stockholm, Sweden). We also acknowledge the following individuals who assisted with data collection efforts: R. Goemaes (Study Centre for Perinatal Epidemiology (SPE), Brussels, Belgium); C. Leroy (Le Centre d'Épidémiologie Périnatale (CEpiP), Brussels, Belgium); J. Gamba and K. Ronald (St. Francis Nsambya Hospital, Kampala, Uganda); M. Heidarzadeh (Tabriz Medical University, Tabriz, Iran); M. J. Ojeda (Pontificia Universidad Católica de Chile, Santiago, Chile); S. Nangia (Lady Hardinge Medical College, New Delhi, India); C. Nelson, S. Metcalfe and W. Luo (Maternal Infant Health Section of the Public Health Agency of Canada, Ottawa, Canada); K. Sitcov (Foundation for Health Care Quality, Seattle, United States); A. Valek (Semmelweis University, Budapest, Hungary); M. R. Yanlin Liu (Mater Data and Analytics, Brisbane, Australia). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. Publisher Copyright: © 2023, The Author(s).Preterm birth (PTB) is the leading cause of infant mortality worldwide. Changes in PTB rates, ranging from −90% to +30%, were reported in many countries following early COVID-19 pandemic response measures (‘lockdowns’). It is unclear whether this variation reflects real differences in lockdown impacts, or perhaps differences in stillbirth rates and/or study designs. Here we present interrupted time series and meta-analyses using harmonized data from 52 million births in 26 countries, 18 of which had representative population-based data, with overall PTB rates ranging from 6% to 12% and stillbirth ranging from 2.5 to 10.5 per 1,000 births. We show small reductions in PTB in the first (odds ratio 0.96, 95% confidence interval 0.95–0.98, P value <0.0001), second (0.96, 0.92–0.99, 0.03) and third (0.97, 0.94–1.00, 0.09) months of lockdown, but not in the fourth month of lockdown (0.99, 0.96–1.01, 0.34), although there were some between-country differences after the first month. For high-income countries in this study, we did not observe an association between lockdown and stillbirths in the second (1.00, 0.88–1.14, 0.98), third (0.99, 0.88–1.12, 0.89) and fourth (1.01, 0.87–1.18, 0.86) months of lockdown, although we have imprecise estimates due to stillbirths being a relatively rare event. We did, however, find evidence of increased risk of stillbirth in the first month of lockdown in high-income countries (1.14, 1.02–1.29, 0.02) and, in Brazil, we found evidence for an association between lockdown and stillbirth in the second (1.09, 1.03–1.15, 0.002), third (1.10, 1.03–1.17, 0.003) and fourth (1.12, 1.05–1.19, <0.001) months of lockdown. With an estimated 14.8 million PTB annually worldwide, the modest reductions observed during early pandemic lockdowns translate into large numbers of PTB averted globally and warrant further research into causal pathways.Peer reviewe

    Changes in preterm birth and stillbirth during COVID-19 lockdowns in 26 countries.

    Get PDF
    Preterm birth (PTB) is the leading cause of infant mortality worldwide. Changes in PTB rates, ranging from -90% to +30%, were reported in many countries following early COVID-19 pandemic response measures ('lockdowns'). It is unclear whether this variation reflects real differences in lockdown impacts, or perhaps differences in stillbirth rates and/or study designs. Here we present interrupted time series and meta-analyses using harmonized data from 52 million births in 26 countries, 18 of which had representative population-based data, with overall PTB rates ranging from 6% to 12% and stillbirth ranging from 2.5 to 10.5 per 1,000 births. We show small reductions in PTB in the first (odds ratio 0.96, 95% confidence interval 0.95-0.98, P value <0.0001), second (0.96, 0.92-0.99, 0.03) and third (0.97, 0.94-1.00, 0.09) months of lockdown, but not in the fourth month of lockdown (0.99, 0.96-1.01, 0.34), although there were some between-country differences after the first month. For high-income countries in this study, we did not observe an association between lockdown and stillbirths in the second (1.00, 0.88-1.14, 0.98), third (0.99, 0.88-1.12, 0.89) and fourth (1.01, 0.87-1.18, 0.86) months of lockdown, although we have imprecise estimates due to stillbirths being a relatively rare event. We did, however, find evidence of increased risk of stillbirth in the first month of lockdown in high-income countries (1.14, 1.02-1.29, 0.02) and, in Brazil, we found evidence for an association between lockdown and stillbirth in the second (1.09, 1.03-1.15, 0.002), third (1.10, 1.03-1.17, 0.003) and fourth (1.12, 1.05-1.19, <0.001) months of lockdown. With an estimated 14.8 million PTB annually worldwide, the modest reductions observed during early pandemic lockdowns translate into large numbers of PTB averted globally and warrant further research into causal pathways

    Changes in preterm birth and stillbirth during COVID-19 lockdowns in 26 countries.

    Get PDF
    Preterm birth (PTB) is the leading cause of infant mortality worldwide. Changes in PTB rates, ranging from -90% to +30%, were reported in many countries following early COVID-19 pandemic response measures ('lockdowns'). It is unclear whether this variation reflects real differences in lockdown impacts, or perhaps differences in stillbirth rates and/or study designs. Here we present interrupted time series and meta-analyses using harmonized data from 52 million births in 26 countries, 18 of which had representative population-based data, with overall PTB rates ranging from 6% to 12% and stillbirth ranging from 2.5 to 10.5 per 1,000 births. We show small reductions in PTB in the first (odds ratio 0.96, 95% confidence interval 0.95-0.98, P value <0.0001), second (0.96, 0.92-0.99, 0.03) and third (0.97, 0.94-1.00, 0.09) months of lockdown, but not in the fourth month of lockdown (0.99, 0.96-1.01, 0.34), although there were some between-country differences after the first month. For high-income countries in this study, we did not observe an association between lockdown and stillbirths in the second (1.00, 0.88-1.14, 0.98), third (0.99, 0.88-1.12, 0.89) and fourth (1.01, 0.87-1.18, 0.86) months of lockdown, although we have imprecise estimates due to stillbirths being a relatively rare event. We did, however, find evidence of increased risk of stillbirth in the first month of lockdown in high-income countries (1.14, 1.02-1.29, 0.02) and, in Brazil, we found evidence for an association between lockdown and stillbirth in the second (1.09, 1.03-1.15, 0.002), third (1.10, 1.03-1.17, 0.003) and fourth (1.12, 1.05-1.19, <0.001) months of lockdown. With an estimated 14.8 million PTB annually worldwide, the modest reductions observed during early pandemic lockdowns translate into large numbers of PTB averted globally and warrant further research into causal pathways

    Perspective piece effect of SARS-CoV-2 infection in pregnancy on maternal and neonatal outcomes in Africa: An AFREhealth call for evidence through multicountry research collaboration

    No full text
    © 2021 by The American Society of Tropical Medicine and Hygiene In the African context, there is a paucity of data on SARS-CoV-2 infection and associated COVID-19 in pregnancy. Given the endemicity of infections such as malaria, HIV, and tuberculosis (TB) in sub-Saharan Africa (SSA), it is important to evaluate coinfections with SARS-CoV-2 and their impact on maternal/infant outcomes. Robust research is critically needed to evaluate the effects of the added burden of COVID-19 in pregnancy, to help develop evidence-based policies toward improving maternal and infant outcomes. In this perspective, we briefly review current knowledge on the clinical features of COVID-19 in pregnancy; the risks of preterm birth and cesarean delivery secondary to comorbid severity; the effects of maternal SARS-CoV-2 infection on the fetus/neonate; and in utero mother-to-child SARS-CoV-2 transmission. We further highlight the need to conduct multicountry surveillance as well as retrospective and prospective cohort studies across SSA. This will enable assessments of SARS-CoV-2 burden among pregnant African women and improve the understanding of the spectrum of COVID-19 manifestations in this population, which may be living with or without HIV, TB, and/or other coinfections/comorbidities. In addition, multicountry studies will allow a better understanding of risk factors and outcomes to be compared across countries and subregions. Such an approach will encourage and strengthen much-needed intra-African, south-to-south multidisciplinary and interprofessional research collaborations. The African Forum for Research and Education in Health\u27s COVID-19 Research Working Group has embarked upon such a collaboration across Western, Central, Eastern and Southern Africa

    Severe Acute Respiratory Syndrome Coronavirus 2 Infection and Pregnancy in Sub-Saharan Africa: A 6-Country Retrospective Cohort Analysis

    No full text
    BACKGROUND: Few data are available on COVID-19 outcomes among pregnant women in sub-Saharan Africa (SSA), where high-risk comorbidities are prevalent. We investigated the impact of pregnancy on SARS-CoV-2 infection and of SARS-CoV-2 infection on pregnancy to generate evidence for health policy and clinical practice. METHODS: We conducted a 6-country retrospective cohort study among hospitalized women of childbearing age between 1 March 2020 and 31 March 2021. Exposures were (1) pregnancy and (2) a positive SARS-CoV-2 RT-PCR test. The primary outcome for both analyses was intensive care unit (ICU) admission. Secondary outcomes included supplemental oxygen requirement, mechanical ventilation, adverse birth outcomes, and in-hospital mortality. We used log-binomial regression to estimate the effect between pregnancy and SARS-CoV-2 infection. Factors associated with mortality were evaluated using competing-risk proportional subdistribution hazards models. RESULTS: Our analyses included 1315 hospitalized women: 510 pregnant women with SARS-CoV-2, 403 nonpregnant women with SARS-CoV-2, and 402 pregnant women without SARS-CoV-2 infection. Among women with SARS-CoV-2 infection, pregnancy was associated with increased risk for ICU admission (adjusted risk ratio [aRR]: 2.38; 95% CI: 1.42-4.01), oxygen supplementation (aRR: 1.86; 95% CI: 1.44-2.42), and hazard of in-hospital death (adjusted sub-hazard ratio [aSHR]: 2.00; 95% CI: 1.08-3.70). Among pregnant women, SARS-CoV-2 infection increased the risk of ICU admission (aRR: 2.0; 95% CI: 1.20-3.35), oxygen supplementation (aRR: 1.57; 95% CI: 1.17-2.11), and hazard of in-hospital death (aSHR: 5.03; 95% CI: 1.79-14.13). CONCLUSIONS: Among hospitalized women in SSA, both SARS-CoV-2 infection and pregnancy independently increased risks of ICU admission, oxygen supplementation, and death. These data support international recommendations to prioritize COVID-19 vaccination among pregnant women

    Effect of SARS-CoV-2 Infection in Pregnancy on Maternal and Neonatal Outcomes in Africa: An AFREhealth Call for Evidence through Multicountry Research Collaboration.

    No full text
    In the African context, there is a paucity of data on SARS-CoV-2 infection and associated COVID-19 in pregnancy. Given the endemicity of infections such as malaria, HIV, and tuberculosis (TB) in sub-Saharan Africa (SSA), it is important to evaluate coinfections with SARS-CoV-2 and their impact on maternal/infant outcomes. Robust research is critically needed to evaluate the effects of the added burden of COVID-19 in pregnancy, to help develop evidence-based policies toward improving maternal and infant outcomes. In this perspective, we briefly review current knowledge on the clinical features of COVID-19 in pregnancy; the risks of preterm birth and cesarean delivery secondary to comorbid severity; the effects of maternal SARS-CoV-2 infection on the fetus/neonate; and in utero mother-to-child SARS-CoV-2 transmission. We further highlight the need to conduct multicountry surveillance as well as retrospective and prospective cohort studies across SSA. This will enable assessments of SARS-CoV-2 burden among pregnant African women and improve the understanding of the spectrum of COVID-19 manifestations in this population, which may be living with or without HIV, TB, and/or other coinfections/comorbidities. In addition, multicountry studies will allow a better understanding of risk factors and outcomes to be compared across countries and subregions. Such an approach will encourage and strengthen much-needed intra-African, south-to-south multidisciplinary and interprofessional research collaborations. The African Forum for Research and Education in Health’s COVID-19 Research Working Group has embarked upon such a collaboration across Western, Central, Eastern and Southern Africa.http://www.ajtmh.org2022-02-01pm2021Obstetrics and Gynaecolog

    Assessment of Clinical Outcomes Among Children and Adolescents Hospitalized With COVID-19 in 6 Sub-Saharan African Countries.

    No full text
    Little is known about COVID-19 outcomes among children and adolescents in sub-Saharan Africa, where preexisting comorbidities are prevalent. To assess the clinical outcomes and factors associated with outcomes among children and adolescents hospitalized with COVID-19 in 6 countries in sub-Saharan Africa. This cohort study was a retrospective record review of data from 25 hospitals in the Democratic Republic of the Congo, Ghana, Kenya, Nigeria, South Africa, and Uganda from March 1 to December 31, 2020, and included 469 hospitalized patients aged 0 to 19 years with SARS-CoV-2 infection. Age, sex, preexisting comorbidities, and region of residence. An ordinal primary outcome scale was used comprising 5 categories: (1) hospitalization without oxygen supplementation, (2) hospitalization with oxygen supplementation, (3) ICU admission, (4) invasive mechanical ventilation, and (5) death. The secondary outcome was length of hospital stay. Among 469 hospitalized children and adolescents, the median age was 5.9 years (IQR, 1.6-11.1 years); 245 patients (52.4%) were male, and 115 (24.5%) had comorbidities. A total of 39 patients (8.3%) were from central Africa, 172 (36.7%) from eastern Africa, 208 (44.3%) from southern Africa, and 50 (10.7%) from western Africa. Eighteen patients had suspected (n = 6) or confirmed (n = 12) multisystem inflammatory syndrome in children. Thirty-nine patients (8.3%) died, including 22 of 69 patients (31.9%) who required intensive care unit admission and 4 of 18 patients (22.2%) with suspected or confirmed multisystem inflammatory syndrome in children. Among 468 patients, 418 (89.3%) were discharged, and 16 (3.4%) remained hospitalized. The likelihood of outcomes with higher vs lower severity among children younger than 1 year expressed as adjusted odds ratio (aOR) was 4.89 (95% CI, 1.44-16.61) times higher than that of adolescents aged 15 to 19 years. The presence of hypertension (aOR, 5.91; 95% CI, 1.89-18.50), chronic lung disease (aOR, 2.97; 95% CI, 1.65-5.37), or a hematological disorder (aOR, 3.10; 95% CI, 1.04-9.24) was associated with severe outcomes. Age younger than 1 year (adjusted subdistribution hazard ratio [asHR], 0.48; 95% CI, 0.27-0.87), the presence of 1 comorbidity (asHR, 0.54; 95% CI, 0.40-0.72), and the presence of 2 or more comorbidities (asHR, 0.26; 95% CI, 0.18-0.38) were associated with reduced rates of hospital discharge. In this cohort study of children and adolescents hospitalized with COVID-19 in sub-Saharan Africa, high rates of morbidity and mortality were observed among infants and patients with noncommunicable disease comorbidities, suggesting that COVID-19 vaccination and therapeutic interventions are needed for young populations in this region

    The Critical Need for Pooled Data on COVID-19 in African Children: An AFREhealth Call for Action through Multi-Country Research Collaboration.

    No full text
    Globally, there are prevailing knowledge gaps in the epidemiology, clinical manifestations, and outcomes of SARS-CoV-2 infection among children and adolescents; however, these gaps are especially wide in African countries. The availability of robust age-disaggregated data is a critical first step in improving knowledge on disease burden and manifestations of COVID-19 among children. Furthermore, it is essential to improve understanding of SARS-CoV-2 interactions with comorbidities and co-infections such as HIV, tuberculosis, malaria, sickle cell disease and malnutrition, which are highly prevalent among children in sub-Saharan Africa. The African Forum for Research and Education in Health (AFREhealth) COVID-19 Research Collaboration on Children and Adolescents is conducting studies across Western, Central, Eastern, and Southern Africa to address existing knowledge gaps. This consortium is expected to generate key evidence to inform clinical practice and public health policymaking for COVID-19, while concurrently addressing other major diseases affecting children in African countries

    Severe Acute Respiratory Syndrome Coronavirus 2 Infection and Pregnancy in Sub-Saharan Africa: A 6-Country Retrospective Cohort Analysis.

    Get PDF
    Few data are available on COVID-19 outcomes among pregnant women in sub-Saharan Africa (SSA), where high-risk comorbidities are prevalent. We investigated the impact of pregnancy on SARS-CoV-2 infection and of SARS-CoV-2 infection on pregnancy to generate evidence for health policy and clinical practice. We conducted a 6-country retrospective cohort study among hospitalized women of childbearing age between 1 March 2020 and 31 March 2021. Exposures were (1) pregnancy and (2) a positive SARS-CoV-2 RT-PCR test. The primary outcome for both analyses was intensive care unit (ICU) admission. Secondary outcomes included supplemental oxygen requirement, mechanical ventilation, adverse birth outcomes, and in-hospital mortality. We used log-binomial regression to estimate the effect between pregnancy and SARS-CoV-2 infection. Factors associated with mortality were evaluated using competing-risk proportional subdistribution hazards models. Our analyses included 1315 hospitalized women: 510 pregnant women with SARS-CoV-2, 403 nonpregnant women with SARS-CoV-2, and 402 pregnant women without SARS-CoV-2 infection. Among women with SARS-CoV-2 infection, pregnancy was associated with increased risk for ICU admission (adjusted risk ratio [aRR]: 2.38; 95% CI: 1.42-4.01), oxygen supplementation (aRR: 1.86; 95% CI: 1.44-2.42), and hazard of in-hospital death (adjusted sub-hazard ratio [aSHR]: 2.00; 95% CI: 1.08-3.70). Among pregnant women, SARS-CoV-2 infection increased the risk of ICU admission (aRR: 2.0; 95% CI: 1.20-3.35), oxygen supplementation (aRR: 1.57; 95% CI: 1.17-2.11), and hazard of in-hospital death (aSHR: 5.03; 95% CI: 1.79-14.13). Among hospitalized women in SSA, both SARS-CoV-2 infection and pregnancy independently increased risks of ICU admission, oxygen supplementation, and death. These data support international recommendations to prioritize COVID-19 vaccination among pregnant women
    corecore