39 research outputs found

    Antioxidant and Ex Vivo Immune System Regulatory Properties of Boswellia serrata Extracts

    Get PDF
    Boswellia serrata (BS) is an important traditional medicinal plant that currently represents an interesting topic for pharmaceutical research since it possesses several pharmacological properties (e.g., anti-inflammatory, antimicrobial, and antitumour). The safety and versatility of this dietary supplement should allow for its use in numerous pathological conditions; however the quality of the extracts needs to be standardized to increase the clinical success rate resulting from its use. In the present study, different commercially available B. serrata extracts were employed to compare their AKBA content and in vitro antioxidant power. Furthermore, their ability to modulate the immune system regulatory properties was investigated. Our results showed that the AKBA content varied from 3.83 ± 0.10 to 0.03 ± 0.004%, with one sample in which it was not detectable. The highest antioxidant power and phenolic content were shown by the same extract, which also exhibited the highest AKBA concentration. Finally, the BS extracts showed the ability to influence the regulatory and effector T-cell compartments. Our results suggest that frankincense should be further investigated for its promising potentiality to modulate not only inflammation/oxidative stress but also immune dysregulation, but attention should be paid to the composition of the commercial extracts

    Salicylates Inhibit T Cell Adhesion on Endothelium Under Nonstatic Conditions: Induction of L-Selectin Shedding by a Tyrosine Kinase-Dependent Mechanism

    Get PDF
    Abstract Salicylates inhibit T cell adhesion to and transmigration through endothelium by preventing integrin activation induced by contact with endothelial cells. In the present study the effects of aspirin and sodium salicylate on the first steps of T cell adhesion have been analyzed in a nonstatic in vitro system. Salicylates partially reduced adhesion to activated endothelium and, in parallel, L-selectin expression on resting T cells by inducing shedding of the molecule without affecting its mRNA transcript. The role of L-selectin down-regulation in reducing T cell adhesion in this system was supported by the fact that aspirin inhibited T cell adhesion also on plastic-immobilized L-selectin ligand or when α4 integrin-mediated adhesion to endothelium was blocked by specific mAbs. In addition, preincubation of T cells with inhibitors of L-selectin shedding prevented both functional and phenotypic inhibitory effects of salicylates. The decrease in T cell adhesion and L-selectin expression seems to be dependent on intracellular calcium increase and tyrosine kinase activation, because these effects could be reversed by preincubating salicylate-treated T cells with EGTA, genistein, or tyrphostin. Finally, the infusion of aspirin into healthy volunteers induced down-regulation of L-selectin on circulating T cells. These results suggest that salicylates interfere not only with integrin activation, but also with the L-selectin-mediated first steps of T cell binding to endothelium

    Balance between Regulatory T and Th17 Cells in Systemic Lupus Erythematosus: The Old and the New

    Get PDF
    Pathogenic mechanisms underlying the development of systemic lupus erythematosus (SLE) are very complex and not yet entirely clarified. However, the pivotal role of T lymphocytes in the induction and perpetuation of aberrant immune response is well established. Among T cells, IL-17 producing T helper (Th17) cells and regulatory T (Treg) cells represent an intriguing issue to be addressed in SLE pathogenesis, since an imbalance between the two subsets has been observed in the course of the disease. Treg cells appear to be impaired and therefore unable to counteract autoreactive T lymphocytes. Conversely, Th17 cells accumulate in target organs contributing to local IL-17 production and eventually tissue damage. In this setting, targeting Treg/Th17 balance for therapeutic purposes may represent an intriguing and useful tool for SLE treatment in the next future. In this paper, the current knowledge about Treg and Th17 cells interplay in SLE will be discussed

    Characterization and Biological Activities of In Vitro Digested Olive Pomace Polyphenols Evaluated on Ex Vivo Human Immune Blood Cells

    Get PDF
    Olive pomace (OP) represents one of the main by-products of olive oil production, which still contains high quantities of health-promoting bioactive compounds. In the present study, three batches of sun-dried OP were characterized for their profile in phenolic compounds (by HPLC-DAD) and in vitro antioxidant properties (ABTS, FRAP and DPPH assays) before (methanolic extracts) and after (aqueous extracts) their simulated in vitro digestion and dialysis. Phenolic profiles, and, accordingly, the antioxidant activities, showed significant differences among the three OP batches, and most compounds showed good bioaccessibility after simulated digestion. Based on these preliminary screenings, the best OP aqueous extract (OP-W) was further characterized for its peptide composition and subdivided into seven fractions (OP-F). The most promising OP-F (characterized for its metabolome) and OP-W samples were then assessed for their potential anti-inflammatory properties in ex vivo human peripheral mononuclear cells (PBMCs) triggered or not with lipopolysaccharide (LPS). The levels of 16 pro-and anti-inflammatory cytokines were measured in PBMC culture media by multiplex ELISA assay, whereas the gene expressions of interleukin-6 (IL-6), IL-10 and TNF-α were measured by real time RT-qPCR. Interestingly, OP-W and PO-F samples had a similar effect in reducing the expressions of IL-6 and TNF-α, but only OP-W was able to reduce the release of these inflammatory mediators, suggesting that the anti-inflammatory activity of OP-W is different from that of OP-F

    Subclinical Atherosclerosis in Primary Sjögren's Syndrome: Does Inflammation Matter?

    Get PDF
    Sjögren's syndrome (SS) is a systemic autoimmune disease mainly characterized by inflammatory involvement of exocrine gland. Atherosclerosis is a complex process leading to plaque formation in arterial wall with subsequent cardiovascular (CV) events. Recently, numerous studies demonstrated that SS patients bear an increased CV risk. Since activation of immune system is a key element in atherosclerosis, it is interesting to analyze whether and how the autoimmune and inflammatory events characterizing SS pathogenesis directly or indirectly contribute to atherosclerosis risk in these patients. An increase in circulating endothelial microparticles and integrins, which may be a consequence of endothelial damage and impaired repair mechanisms, has been demonstrated in SS. Increased endothelial expression of adhesion molecules with subsequent infiltration of inflammatory cells into arterial wall is also a critical event in atherosclerosis. The early inflammatory events taking place in the atherosclerotic plaque cause an increase in alarmins, such as S100A8/A9, which seems to be associated with SS disease activity and, in turn, induce up-regulation of interleukin (IL)-1β and other pro-atherogenic cytokines. Interestingly, increased IL-1β levels were also detected in tertiary lymphoid structures developing in vessel adventitia adjacent to the atherosclerotic plaque, suggesting a direct role of IL-1β in this process. Similar to these structures, germinal center-like structures arising in SS exocrine glands are also tertiary lymphoid systems where T-helper (Th) cell subsets govern the adaptive immune response. Th1 cells are the most prevalent subtype and have been shown to be strongly involved in both SS pathogenesis and atherosclerosis. Th17 cells are attracting great interest and few studies showed its importance in SS development. Albeit in low amounts, a Th17 signature was also detected in atherosclerotic plaques and some animal models demonstrated a significant pro-atherogenic role and positive effects of IL-17A blockade. Despite the fact that T cells have a pivotal role in the inflammatory process that ultimately leads to atherosclerosis, B cells have also been detected in atherosclerotic plaques, although their exact role is still mostly unknown with studies showing contrasting results. In this scenario, the role of inflammation in atherosclerosis pathogenesis in patients with SS needs to be further explored

    Dietary Supplementation with Boswellia serrata, Verbascum thapsus, and Curcuma longa in Show Jumping Horses: Effects on Serum Proteome, Antioxidant Status, and Anti-Inflammatory Gene Expression

    Get PDF
    Abstract: Intense exercise can cause inflammation and oxidative stress due to the production of reactive oxygen species. These pathophysiological processes are interdependent, and each one can induce the other, creating a vicious circle. A placebo-controlled blind study was carried out in show jumping horses (n. 16) to evaluate the effects of a commercial dietary supplement (Dolhorse® N.B.F. Lanes srl, Milan, Italy) containing Verbascum thapsus leaf powder (1.42%), Curcuma longa (14.280 mg/kg), and Boswellia serrata (Roxb ex Colebr) (14.280 mg/kg) extracts. Before and after 10 days of dietary supplementation, blood samples were collected to evaluate the protein levels, antioxidants, and inflammatory responses by proteomic analysis or real-time Reverse Transcriptase- Polymerase Chain Reaction (real-time RT-PCR). A total of 36 protein spots, connected to 29 proteins, were modulated by dietary supplementation, whereas real-time RT-PCR revealed a significant downregulation of proinflammatory cytokines (interleukin 1α (p < 0.05) and interleukin-6 (0.005), toll-like receptor 4 (p < 0.05), and IKBKB (p < 0.05) in supplemented sport horses. Immunoglobulin chains, gelsolin, plasminogen, vitamin D binding protein, apolipoprotein AIV, and filamin B were overexpressed, whereas haptoglobin, α-2-HS-glycoprotein, α2-macroglobulin, afamin, amine oxidase, 60S acidic ribosomal protein, and complement fragments 3, 4, and 7 were reduced. No effect was observed on the antioxidant defense systems. The present results suggest this phytotherapy may reinforce the innate immune responses, thus representing a valid adjuvant to alleviate inflammation, which is a pathophysiological process in sport horses

    Blue honeysuckle fruit (Lonicera caerulea L.) from eastern Russia: phenolic composition, nutritional value and biological activities of its polar extracts

    Get PDF
    In the present work we conducted a comprehensive chemical analysis of blue honeysuckle (Lonicera caerulea) spontaneously growing in eastern Russia. HPLC-DAD-ESI/MS analysis showed cyanidin-3-glucoside as the major constituent among phenolics, while nutritional analysis revealed fibre, protein, calcium and magnesium as the most important macro- and micronutrients, respectively. Fatty acid composition was dominated by polyunsaturated fatty acids, linoleic acid being the most abundant. Furthermore, we evaluated several in vitro biological activities such as antioxidant, antimicrobial, antiproliferative, wound healing and immunomodulatory effects of blue honeysuckle aqueous and ethanolic extracts that are often incorporated in food and nutraceutical preparations. While the fruit extracts were revealed to be potent radical scavengers with significant inhibition of ABTS radical, thus confirming the literature data, their inhibitory effects against microbial pathogens and tumor cell lines were negligible. The fruit aqueous extract did not show toxicity to human fibroblasts, but 24 h treatment with 150–200 μg per mL of extract slightly enhanced the cell migration when tested by scratched wound assay. Worth mentioning was the inhibitory effect displayed by the blue honeysuckle fruit aqueous extract on human lymphocytes
    corecore