35 research outputs found

    Targeting HIF-1α to Prevent Renal Ischemia-Reperfusion Injury: Does It Work?

    Get PDF
    Partial nephrectomy (open or minimally invasive) usually requires temporary renal arterial occlusion to limit intraoperative bleeding and improve access to intrarenal structures. This is a time-critical step due to the critical ischemia period of renal tissue. Prolonged renal ischemia may lead to irreversible nephron damage in the remaining tissue and, ultimately, chronic kidney disease. This is potentiated by the incompletely understood ischemia-reperfusion injury (IRI). A key mechanism in IRI prevention appears to be the upregulation of an intracellular transcription protein, Hypoxia-Inducible Factor (HIF). HIF mediates metabolic adaptation, angiogenesis, erythropoiesis, cell growth, survival, and apoptosis. Upregulating HIF-1α via ischemic preconditioning (IPC) or drugs that simulate hypoxia (hypoxia-mimetics) has been investigated as a method to reduce IRI. While many promising chemical agents have been trialed for the prevention of IRI in small animal studies, all have failed in human trials. The aim of this review is to highlight the techniques and drugs that target HIF-1α and ameliorate IRI associated with renal ischemia. Developing a technique or drug that could reduce the risk of acute kidney injury associated with renal IRI would have an immediate worldwide impact on multisystem surgeries that would otherwise risk ischemic tissue injury

    Targeting HIF-1 α

    No full text

    Zinc Preconditioning Provides Cytoprotection following Iodinated Contrast Media Exposure in In Vitro Models

    No full text
    Introduction & Objectives. Contrast media (CM) causes renal injury through both direct cellular injury (cytotoxicity) and regional vascular changes (renal hypoxia) mediated by reactive oxygen species (ROS). Zinc may be able to provide protection against CM-induced cytotoxicity due to its indirect antioxidant properties and subsequent effect on ROS. We aimed to determine the protective role of zinc preconditioning against contrast-induced renal injury in vitro. Methods. Normal human proximal renal kidney cells (HK-2) were preconditioned with either increasing doses of ZnCl2 or control. Following this preconditioning, cells were exposed to increasing concentrations of Iohexol 300 mg I2/ml for four hours. Key outcome measures included cell survival (MTT colorimetric assay) and ROS generation (H2DCFDA fluorescence assay). Results. Contrast media induced a dose-dependent reduction in survival of HK-2 cells. Compared to control, contrast media at 150, 225, and 300 mg I2/ml resulted in 69.5% (SD 8.8%), 37.3% (SD 4.8%), and 4.8% (SD 6.6%) cell survival, respectively (p<0.001). Preconditioning with 37.5 μM and 50 μM ZnCl2 increased cell survival by 173% (SD 27.8%) (p<0.001) and 219% (SD 32.2%) (p<0.001), respectively, compared to control preconditioning. Zinc preconditioning resulted in a reduction of ROS generation. Zinc pre-conditioning with 37.5 μM μM ZnCl2 reduced ROS generation by 46% (p<0.001) compared to control pre-conditioning. Conclusions. Zinc preconditioning reduces oxidative stress following exposure to radiographic contrast media which in turn results in increased survival of renal cells. Translation of this in vitro finding in animal models will lay the foundation for future use of zinc preconditioning against contrast induced nephropathy

    Production, secretion, and biological activity of the C-terminal flanking peptide of human progastrin

    No full text
    Background & Aims: Processing of progastrin, the 80-amino acid precursor of the hormone gastrin, generates a variety of peptides with distinct distributions and biological activities. However, little is known regarding the expression, secretion, and biological activity of the 6-amino acid C-terminal flanking peptide (CTFP) of progastrin. The objectives were to determine the concentration of CTFP in normal subjects and patients with gastrointestinal diseases and to investigate the biological activity of CTFP. Methods: CTFP, gastrin-amide (Gamide), glycine-extended gastrin (Ggly), and progastrin were measured using region-specific radioimmunoassay (RIA) in antral extracts and resected colorectal cancers (CRC) and in plasma from normal subjects (fasting and meal stimulated) and from patients with CRC, multiple endocrine neoplasia type I (MEN-1), or pernicious anemia. The effect of CTFP on proliferation, migration, and activation of the mitogen-activated protein kinase (MAPK) pathway in several types of gastrointestinal cell lines was determined. Results: CTFP is by far the predominant progastrin-derived peptide found in the antrum (4-fold higher than Gamide), resected CRC, and circulation (60-fold higher than Gamide) and is released after meal stimulation. The hypergastrinemic patients (MEN-1, pernicious anemia) had elevated plasma Gamide but unaltered CTFP demonstrating differential secretion of these 2 progastrin-derived peptides. Finally, CTFP stimulated proliferation and migration and activated MAPK of cells in culture. Conclusions: The high and regulated expression of CTFP in healthy and diseased subjects combined with the evidence for biological activity of CTFP demonstrates that CTFP is not an inactive metabolite of progastrin processing but is a bioactive peptide with potential roles in the normal and diseased gastrointestinal tract
    corecore