8 research outputs found

    Computational study of photoexcited dynamics in bichromophoric cross-shaped oligofluorene

    Get PDF
    The non-adiabatic excited state molecular dynamics (NA-ESMD) approach is applied to investigate photoexcited dynamics and relaxation pathways in a spiro-linked conjugated polyfluorene at room (T = 300 K) and low (T = 10 K) temperatures. This dimeric aggregate consists of two perpendicularly oriented weakly interacting α-polyfluorene oligomers. The negligible coupling between the monomer chains results in an initial absorption band composed of equal contributions of the two lowest excited electronic states, each localized on one of the two chains. After photoexcitation, an efficient ultrafast localization of the entire electronic population to the lowest excited state is observed on the time scale of about 100 fs. Both internal conversion between excited electronic states and vibronic energy relaxation on a single electronic state contribute to this process. Thus, photoexcited dynamics of the polyfluorene dimer follows two distinct pathways with substantial temperature dependence on their efficiency. One relaxation channel involves resonance electronic energy transfer between the monomer chains, whereas the second pathway concerns the relaxation of the electronic energy on the same chain that has been initially excited due to electron-phonon coupling. Despite the slower vibrational relaxation, a more efficient ultrafast electronic relaxation is observed at low temperature. Our numerical simulations analyze the effects of molecular geometry distortion during the electronic energy redistribution and suggest spectroscopic signatures reflecting complex electron-vibrational dynamics.Fil: Ondarse Alvarez, Dianelys. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes; ArgentinaFil: Oldani, Andres Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes; ArgentinaFil: Tretiak, S.. Los Alamos National Laboratory. Los Alamos; Estados UnidosFil: Fernández Alberti, Sebastián. Universidad Nacional de Quilmes; Argentin

    Let Digons be Bygones: The Fate of Excitons in Curved π-Systems

    Get PDF
    We explore the diverse origins of unpolarized absorption and emission of molecular polygons consisting of π-conjugated oligomer chains held in a bent geometry by strain controlled at the vertex units. For this purpose, we make use of atomistic nonadiabatic excited-state molecular dynamics simulations of a bichromophore molecular polygon (digon) with bent chromophore chains. Both structural and photoexcited dynamics were found to affect polarization features. Bending strain induces exciton localization on individual chromophore units of the conjugated chains. The latter display different transition dipole moment orientations, a feature not present in the linear oligomer counterparts. In addition, bending makes exciton localization very sensitive to molecular distortions induced by thermal fluctuations. The excited-state dynamics reveals an ultrafast intramolecular energy redistribution that spreads the exciton equally among spatially separated chromophore fragments within the molecular system. As a result, digons become virtually unpolarized absorbers and emitters, in agreement with recent experimental studies on the single-molecule level.Fil: Ondarse Alvarez, Dianelys.Fil: Nelson, Tammie.Fil: Lupton, John M..Fil: Tretiak, Sergei.Fil: Fernandez-Alberti, Sebastian

    Coherent exciton-vibrational dynamics and energy transfer in conjugated organics

    Get PDF
    Coherence, signifying concurrent electron-vibrational dynamics in complex natural and man-made systems, is currently a subject of intense study. Understanding this phenomenon is important when designing carrier transport in optoelectronic materials. Here, excited state dynamics simulations reveal a ubiquitous pattern in the evolution of photoexcitations for a broad range of molecular systems. Symmetries of the wavefunctions define a specific form of the non-adiabatic coupling that drives quantum transitions between excited states, leading to a collective asymmetric vibrational excitation coupled to the electronic system. This promotes periodic oscillatory evolution of the wavefunctions, preserving specific phase and amplitude relations across the ensemble of trajectories. The simple model proposed here explains the appearance of coherent exciton-vibrational dynamics due to non-adiabatic transitions, which is universal across multiple molecular systems. The observed relationships between electronic wavefunctions and the resulting functionalities allows us to understand, and potentially manipulate, excited state dynamics and energy transfer in molecular materials.Fil: Nelson, Tammie R.. Los Alamos National Laboratory; Estados UnidosFil: Ondarse Alvarez, Dianelys. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes; ArgentinaFil: Oldani, Andres Nicolas. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rodríguez Hernández, Beatriz. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Alfonso Hernandez, Laura. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes; ArgentinaFil: Galindo, Johan F.. Universidad Nacional de Colombia; ColombiaFil: Kleiman, Valeria D.. University of Florida; Estados UnidosFil: Fernández Alberti, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes; ArgentinaFil: Roitberg, Adrián. University of Florida; Estados UnidosFil: Tretiak, Sergei. Los Alamos National Laboratory; Estados Unido

    Energy transfer and spatial scrambling of an exciton in a conjugated dendrimer

    Get PDF
    Photoexcitation of multichromophoric light harvesting molecules induces a number of intramolecular electronic energy relaxation and redistribution pathways that can ultimately lead to ultrafast exciton self-trapping on a single chromophore unit. We investigate the photoinduced processes that take place on a phenylene-ethynylene dendrimer, consisting of nine equivalent linear chromophore units or branches. meta-Substituted links between branches break the conjugation giving rise to weak couplings between them and to localized excitations. Our nonadiabatic excited-state molecular dynamics simulations reveal that the ultrafast internal conversion process to the lowest excited state is accompanied by an inner → outer inter-branch migration of the exciton due to the entropic bias associated with energetically equivalent conjugated segments. The electronic energy redistribution among chromophore units occurs through several possible pathways in which through-bond transport and through-space exciton hopping mechanisms can be distinguished. Besides, triple bond excitations coincide with the localization of the electronic transition densities, suggesting that the intramolecular energy redistribution is a concerted electronic and vibrational energy transfer process.Fil: Ondarse Alvarez, Dianelys. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Oldani, Andres Nicolas. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Roitberg, A. E.. University of Florida; Estados UnidosFil: Kleiman, V.. University of Florida; Estados UnidosFil: Tretiak, Sergei. Center for Integrated Nanotechnologies; Estados UnidosFil: Fernández Alberti, Sebastián. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Ultrafast electronic energy relaxation in a conjugated dendrimer leading to inter-branch energy redistribution

    Get PDF
    Dendrimers are arrays of coupled chromophores, where the energy of each unit depends on its structure and conformation. The light harvesting and energy funneling properties are strongly dependent on their highly branched conjugated architecture. Herein, the photoexcitation and subsequent ultrafast electronic energy relaxation and redistribution of a first generation dendrimer (1) are analyzed combining theoretical and experimental studies. Dendrimer 1 consists of three linear phenylene-ethynylene (PE) units, or branches, attached in the meta position to a central group opening up the possibility of inter-branch energy transfer. Excited state dynamics are explored using both time-resolved spectroscopy and non-adiabatic excited state molecular dynamics simulations. Our results indicate a subpicosecond loss of anisotropy due to an initial excitation into several states with different spatial localizations, followed by exciton self-trapping on different units. This exciton hops between branches. The absence of an energy gradient leads to an ultrafast energy redistribution among isoenergetic chromophore units. At long times we observe similar probabilities for each branch to retain significant contributions of the transition density of the lowest electronic excited-state. The observed unpolarized emission is attributed to the contraction of the electronic wavefunction onto a single branch with frequent interbranch hops, and not to its delocalization over the whole dendrimer.Fil: Ondarse Alvarez, Dianelys. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; ArgentinaFil: Kömürlü, S.. University of Florida; Estados UnidosFil: Roitberg, Adrián. University of Florida; Estados UnidosFil: Pierdominici Sottile, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; ArgentinaFil: Tretiak, S.. Los Alamos National Laboratory; Estados UnidosFil: Fernández Alberti, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; ArgentinaFil: Kleiman, V. D.. University of Florida; Estados Unido

    Modification of Optical Properties and Excited-State Dynamics by Linearizing Cyclic Paraphenylene Chromophores

    No full text
    Cyclic and bent conjugated molecular systems have tunable optical, structural, and dynamical features that differentiate them from their linear counterparts. Examples of such systems are [n]cycloparaphenylenes (CPPs), which consist of nanorings composed of n para-linked benzene units. Circular geometry and tunability of π-orbital overlaps and bending strains enrich them with unique physicochemical and electronic properties compared to those of the corresponding linear oligoparaphenylenes. Herein, we explore the changes of these properties on alkyl-tethered-p-heptaphenylenes by modifying the methylene tether lengths from 1 to 19 carbons, leading to a gradual linearization of the conjugated backbone conformation. For this purpose, the photoinduced internal conversion processes of different alkyl-tethered-p-heptaphenylenes are simulated using nonadiabatic excited-state molecular dynamics. We found that the greater the strain introduced on the conjugated system, the slower the electronic and vibrational energy relaxation process. All bent p-heptaphenylenes exhibit similar patterns of intramolecular energy redistribution that finally spatially localize the exciton on phenylene units in the middle of the conjugated chain. This behavior is opposite to the random exciton localization previously reported for [n]CPPs. Moreover, the nonadiabatic S2 → S1 electronic transition activates specific collective asymmetric vibrational excitations that promote periodic oscillatory evolution of the excitonic wave function before an excessive energy dissipates into the bath degrees of freedom.Fil: Rodríguez Hernández, Beatriz. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ondarse Alvarez, Dianelys. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Oldani, Andres Nicolas. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Martinez Mesa, Aliezer. Universidad de la Habana. Facultad de Física; Cuba. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Uranga Pina, Llinersy. Universidad de la Habana. Facultad de Física; CubaFil: Tretiak, Sergei. Los Alamos National Laboratory; Estados UnidosFil: Fernández Alberti, Sebastián. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Photoexcited Energy Relaxation in a Zigzag Carbon Nanobelt

    No full text
    Progress in the synthesis of new carbon nanorings and nanobelts broadens the library of materials with unique structural and optical properties that can be attractive for further potential applications in host-guest chemistry, nanoelectronics, and photonics. Herein, we study the photoexcitation and subsequent energy relaxation and redistribution of a recently synthesized zigzag carbon nanobelt using nonadiabatic excited-state molecular dynamics simulations. A gradual change in the direction of transition dipole moments and spatial localization of the electronic transition density is observed for internal conversion from the initially excited electronic state to the lowest-energy excited state. Electronic relaxation involves long-lived states associated with large energy gaps, changes of symmetry, and low couplings with the corresponding states immediately below them. The passage through these long-lived states involves significant changes in the spatial localization of the electronic transition density. Our results reveal the excited-state dynamical properties of the zigzag-type nanobelt that differentiate this molecule from other nanobelts. These insights can stimulate further designs of zigzag nanobelts tailored for specific nanoelectronic and photonic applications.Fil: Negrín Yuvero, Lázaro Hassiel. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Freixas Lemus, Victor Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes; ArgentinaFil: Ondarse Alvarez, Dianelys. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes; ArgentinaFil: Ledesma, Ana Estela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Centro de Investigación en Biofísica Aplicada y Alimentos. - Universidad Nacional de Santiago del Estero. Centro de Investigación en Biofísica Aplicada y Alimentos; ArgentinaFil: Tretiak, Sergei. Universidad Nacional de Santiago del Estero; ArgentinaFil: Fernández Alberti, Sebastián. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Vibrational Funnels for Energy Transfer in Organic Chromophores

    No full text
    Photoinduced intramolecular energy transfers in multichromophoric molecules involve nonadiabatic vibronic channels that act as energy transfer funnels. They commonly take place through specific directions of motion dictated by the nonadiabatic coupling vectors. Vibrational funnels may support persistent coherences between electronic states and sometimes delineate the presence of minor alternative energy transfer pathways. The ultimate confirmation of their role on the interchromophoric energy transfer can be achieved by performing nonadiabatic excited-state molecular dynamics simulations by selectively freezing the nuclear motions in question. Our results point out this strategy as a useful tool to identify and evaluate the impact of these vibrational funnels on the energy transfer processes and guide the in silico design of materials with tunable properties and enhanced functionalities. Our work encourages applications of this methodology to different chemical and biochemical processes such as reactive scattering and protein conformational changes, to name a few.Fil: Negrín Yuvero, Lázaro Hassiel. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Freixas Lemus, Victor Manuel. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ondarse Alvarez, Dianelys. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Alfonso Hernandez, Laura. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rojas Lorenzo, German. Instituto Superior de Tecnologías y Ciencias Aplicadas.; CubaFil: Bastida, Adolfo. Universidad de Murcia; EspañaFil: Tretiak, Sergei. No especifíca;Fil: Fernández Alberti, Sebastián. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
    corecore