634 research outputs found

    Micromechanics of creep fracture: simulation of intergranular crack growth

    Get PDF
    A computational model is presented to analyze intergranular creep crack growth in a polycrystalline aggregate in a discrete manner and based directly on the underlying physical micromechanisms. A crack tip process zone is used in which grains and their grain boundaries are represented discretely, while the surrounding undamaged material is described as a continuum. The constitutive description of the grain boundaries accounts for the relevant physical mechanisms, i.e. viscous grain boundary sliding, the nucleation and growth of grain boundary cavities, and microcracking by the coalescence of cavities. Discrete propagation of the main crack occurs by linking up of neighbouring facet microcracks. Assuming small-scale damage conditions, the model is used to simulate the initial stages of crack growth under C* controlled, model I loading conditions. Initially sharp or blunted cracks are considered. The emphasis in this study is on the effect of the grain microstructure on crack growth.

    Microstructural modelling of creep crack growth from a blunted crack

    Get PDF
    The effect of crack tip blunting on the initial stages of creep crack growth is investigated by means of a planar microstructural model in which grains are represented discretely. The actual linking-up process of discrete microcracks with the macroscopic crack is simulated, with full account of the underlying physical mechanisms such as the nucleation, growth and coalescence of grain boundary cavities accompanied by grain boundary sliding. Results are presented for C*-controlled mode I crack growth under small-scale damage conditions. Particular attention is focused on creep constrained vs. unconstrained growth. Also the effect of grain boundary shear stresses on linking-up is investigated through shear-modified nucleation and growth models. The computations show a general trend that while an initially sharp crack tends to propagate away from the original crack plane, crack tip blunting reduces the crack growth direction. Under unconstrained conditions this can be partly rationalized by the strain rate and facet stress distribution corresponding to steady-state creep.

    Numerical simulation of grain-size effects on creep crack growth by means of grain elements

    Get PDF
    The effect of grain size on creep crack growth is investigated by means of a numerical technique in which the actual crack growth process is simulated in a discrete manner by grain elements and grain boundary elements. The grain elements account for the creep deformation of individual grains, while grain boundary cavitation and sliding are accounted for by grain boundary elements between the grains. This grain-element technique allows for an independent study of multiple grain size effects: a (direct) size effect related to the specimen size/grain size ratio or an (indirect) effect related to the effect of grain size on nucleation rate and creep resistance. Preliminary numerical results are presented concerning the direct effect of grain size, which predict that the crack growth rate and brittleness increase with grain size.

    Protein Mechanics:From Amino Acid to Swimming Cells

    Get PDF
    This proceedings paper contains a review of the work presented in the Sectional Lecture in Solids on August 25 at ICTAM 2016. - Proteins are long polypeptide chains of amino acids and their structure and biological function are directly related to their amino acid sequence. I will discuss three different biological functions that are dominated by protein mechanics, each at their own specific time and length scale. To relate structure to function, multiscale computational models have been developed for (i) cilia and flagella, (ii) actin filament networks and (iii) the nuclear pore complex

    The search for design

    Get PDF

    La búsqueda del diseño

    Get PDF

    La recerca del disseny

    Get PDF

    Topographical changes in photo-responsive liquid crystal films:a computational analysis

    Get PDF
    Switchable materials in response to external stimuli serve as building blocks to construct microscale functionalized actuators and sensors. Azobenzene-modified liquid crystal (LC) polymeric networks, that combine liquid crystalline orientational order and elasticity, reversibly undergo conformational changes powered by light. We present a computational framework to describe photo-induced topographical transformations of azobenzene-modified LC glassy polymer coatings. A nonlinear light penetration model is combined with an opto-mechanical constitutive relation to simulate various ordered and corrugated topographical textures resulting from aligned or randomly distributed LC molecule orientations. Our results shed light on the fundamental physical mechanisms of light-triggered surface undulations and can be used as guidelines to optimize surface modulation and roughness in emerging fields that involve haptics interfacing, friction control and wetting manipulation.</p

    Modeling for control of an inflatable space reflector, the nonlinear 1-D case

    Get PDF
    corecore