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Anisotropic plastic deformation by viscous flow in ion tracks
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(Received 30 June 2004; published 13 January 005

A model describing the origin of ion beam-induced anisotropic plastic deformation is derived and discussed.
It is based on a viscoelastic thermal spike model for viscous flow in single ion tracks derived by Trinkaus and
Ryazanov. Deviatori¢sheay stresses, brought about by the rapid thermal expansion of the thermal spike, relax
at ion track temperatures beyond a certain flow temperature. Shear stress relaxation is accompanied by the
generation of viscous strains. The model introduces differential equations describing the time evolution of
the radial and axial stresses, enabling an exact derivation of the viscous strains for any ion track temperature
history T(t). It is shown that the viscous strains effectively freeze in for large track cooling rates, whereas
reverse viscous flow reduces the net viscous strains in the ion track for smaller cooling rates. The model
is extended to include finite-size effects that occur for ion tracks close to the sample edge, enabling a
comparison with experimental results for systems with small size. The “effective flow temperature approach”
that was earlier introduced by Trinkaus and Ryazanov by making use of Eshelby’s theory of elastic inclusions,
follows directly from the viscoelastic model as a limiting case. We show that the viscous strains in single
ion tracks are the origin of the macroscopic anisotropic deformation process. The macroscopic deformation
rate can be directly found by superposing the effects of single ion impacts. By taking realistic materials
parameters, model calculations are performed for experimentally studied cases. Qualitative agreement is
observed.

DOI: 10.1103/PhysRevB.71.024103 PACS nun®er61.43-j, 61.80.Az, 61.82.Ms, 62.20.Fe

[. INTRODUCTION also known as the éffective flow temperature approath
describes the viscous relaxation of shear stresses in the cy-
Stress-free amorphous materials subjected to irradiatiotindrical ion track region. These shear stresses are brought
with ions at energies of-100 keV and higher exhibit aniso- about by the rapid thermal expansion of the ion-induced ther-
tropic plastic flowt~” The anisotropy is related to the direc- Mal spike. Complete shear stress relaxation in this region is
tion of the ion beam: materials expand perpendicular to th@ssumed to take place when the ion track temperature ex-
ion beam and contract parallel to the ion beam while main€€ds a certain flow temperature Trinkaus and Ryazanov
taining their volume. The anisotropic deformation is most!USe Eshelby’s theory of ellipsoidal elastic inclusions in
pronounced at low temperaturés100 K) and decreases elastically isotropic media to calculate the viscous shear

N T - . strains and assume these to freeze in upon rapid cooling
with increasing irradiation temperatuté. The deformation s0 as to produce the overall anisotropic deformatio@ur

. - ) S WIim in the current paper is to analyze in detail this stress
tion. It is well eSt?‘b"Sh?d _that the deformation is ”?a'”'_y relaxation process, focusing on the spatial evolution of stress
driven by ek_actromc excnanpns rather than the atomic dis4nq strain as a function of temperature and time. Along the
placements induced by the ion beam. _ , _way, due attention is paid to boundary conditions and
Anisotropic deformation has been experimentally investi-gpproximations.
gated in great detail for thin foils of silica and metallic This paper is organized as follows. After deﬁning the
glasses:* Recently, MeV ion irradiation of micron-sized col- proper type of viscoelastic model and describing the equa-
loidal silica particles was used to change the colloids’ shap&ons and boundary conditions governing the viscous flow in
from spherical to oblate ellipsoid&t® The ion irradiation- jon tracks(Sec. I), we will first analyze the stresses and
induced anisotropic deformation technique is now a well-strains that develop upon initial thermal loadit@ec. I1I).
established tool to tailor the shape of nanoscale and microsubsequently, in Sec. IV, we will study viscous relaxation by
cale structures. It has led to many applications, such as theeriving a set of differential equations describing the evolu-
tailoring of lithographic as well as colloidal nanomasks, tun-tion of the stresses and the viscous strains in ion tracks. This
ing the optical bandgap of colloidal photonic crystals, tailor-will lead to a general closed-form solution for the viscous
ing the plasmon resonance in metallo-dielectric colloids, andtrains. Based on these general solutions we will show in
controlling the anisotropy of colloidal particles for use in Sec. V some examples of time-dependent flow in ion tracks
colloidal ordering studie%1° and compare our results with theffective flow temperature
One of the most successful attempts to describe the defoapproach approximation. We will also show that ion tracks
mation process with many of its characteristics is the visclose to a sample edge exhibit reduced viscous flow com-
coelastic model derived by Trinkawg al!!-14This model, pared to ion tracks situated far away from the edges. This
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result enables a comparison with experiments performed on
nanoscale systems with dimensions comparable to that ofthe ...
ion track. In Sec. VI we will show that the macroscopic
deformation(as the result of multiple ion tracksan be cal-

culated directly from our mesoscopic model, without the ne- h

-{}}_g

IR,
cessity of calculating the volume average of the total strain. o .
Finally, in Sec. VII, we will compare the calculated macro- i , Top view:
scopic deformation rate for silica glass with experimental i
values. | J— ST Y A%
\.—!T'/ r+dr
N B '
II. FORMULATION OF THE MODEL i‘T’% x

When an ion penetrates a solid it is slowed down by F|G. 1. Geometry of a cylindrical ion track of radiasn a disk
nuclear and electronic stopping procesSesnisotropic de-  (samplg with radiusb and heighth. The cylindrical coordinates,
formation is mainly dependent on the electronic energy 10S9, z are indicated in the figure, as well as the stress compomrents
Fe. This excitation/ionization process takes place withinand o,

10716, After local thermalization of the electronic sub-

system, energy is transferred from the elecl:gronic_ to th&yrical disk of heighth and radiusb. An ion penetrates the
atomic .subsysten(electron-?zhonon couplin~*® at time  gample ar=0 (along thez axis). As a result of assumptions
scales in the range lﬁ‘—;L(T s. The rapid thermal expan- (1) and(2), a cylindrical region of fixed radius is uniformly

sion of the track results in large shear stresses in the heatg@latefl By virtue of the cylindrical geometry of the

region. For highF, the heated region around the ion track sketched problem we will use cylindrical coordinatesd,
may become fluid. Due to the reduced viscosity the theryngz (see Fig. 1

mally induced shear stresses relax, resulting in viscous ex- (3) The radiusa of the thermal spike is typically on the
pansion in the plane perpendicular to the ion track. Afterg qer of several nr®2° The heighth of the sample, how-
~10°-107 s the thermal spike has cooled down to0 theeyer, is on the order of severam. The aspect ratio of the
irradiation (substratgtemperature. For high cooling rates in- cylinder, h/a, thus is typically>10%. This suggests that the
side the thermal spike, the viscous strain freezes in, leadingy track geometry can be described by an infinitely long
to anisotropic deformatiot. In order to describe the viscous cylinder of radiusa inside a matrix of radiub. As a result, at
flow in ion tracks we now, for the first time, explicitly for- each time during the deformation process, planes remain flat
mulate the assumptions, make the proper choice of V|scoela§axia| displacement, independent ofr), while the axial

tic model, write down all governing equations, and solvegiain &,~du,ldz, is independent o This condition is
them under appropriate approximations and boundary condiznown asgeneralized plane strainWe will show that for

tions as listed below. _ _ b— o the axial strain vanishes, a condition knownpdane
(1) The electronic stoppingF. is energy dependent girain.

and thus changes as a function of depth. However, for high (4 The equations of motiodescribing the evolution of a
enough ion energies and small enough target thicknessggocity field »; in a stress field with components;, are

this depth dependence can be neglected. Indeed, for Me\fyen by (neglecting body forcesp dw/dt=do;/ ax;, where

ion irradiation of colloidal silica particles and the high- e have used Einstein’s summation convention and where
energy ion irradiation of thin foils of metallic and silica s the mass density. The inertia forces are only important for
glasses the variation df, with depth is only small. Conse- qescribing the emission of elastic waves during the initial
quently, also the resulting track temperatilires independent  stage of the thermal spike and are neglected here. This yields

of depth. ~the equations of equilibrium,
(2) Toulemondeet al. have calculated the space-time

evolution of the temperature distribution in the thermal spike
by solving the heat flow equations in the electronic and
atomic subsystems that are coupled by the electron-phonon
interaction!316-20 It is found that the track temperature  (5) To describe anisotropic deformation as a result of the
T(r,t) (r is the radial coordinate measured from the center okhear stress relaxation by viscous flow in ion tracks, it is
the track can rise up to several thousand K. In this article weimportant to make the proper choice for the stress-strain re-
will not take into account these “exact” temperature profilesjations. The commonly used viscoelastic models are the
but assume that the time-dependent temperature in a cylind&elvin/Voigt model, used in Refs. 22 and 23 and Maxwell’s
around the ion trackr<a) is uniform (i.e., independent of model used by Trinkau¥. In the former model a spring
r). The radius of the cylinder, is determined by the so- (elastic, Hookean elemenand a dashpatviscous, Newton-
called flow temperaturd*, the temperature at which the ian elementare coupled in parallel, while they are placed in
material shows fluid-like behavior at time scales of the therseries in the Maxwell model.
mal spikel®14 The Kelvin/Voigt model does not allow for complete
The geometry of the ion track in the sample is schematistress relaxation because of the constraint imposed by
cally depicted in Fig. 1. The sample is modeled as a cylinthe elastic, Hookean element. Here we choose Maxwell's

ﬂO'i' _

&Xl- (2.9

024103-2



ANISOTROPIC PLASTIC DEFORMATION BY VISCOUS. PHYSICAL REVIEW B 71, 024103(2005

model in which shear stresses can be relaxed at reducedatoric stresses to relax, thus introducing viscous strains.
viscosities leading to concomitant viscous strains. TheSince heating of the ion track cylinder occurs at a time scale
latter then are the origin of the anisotropic plastic deformato within ~10713-101?s1320 je., much smaller than the

tion. In Maxwell's model the total strais; is a superposition time scale of viscous flow, the heating can be taken as in-

of elastic (sﬁ), viscous (si‘j), and thermal (s}h) strains, stantaneous. Therefore, we split the analysis in two parts: a

]

that is thermal loadingpart (Sec. Il), describing the generation of
e. v . th internal stresses due to an instantaneous temperature increase

gj =g t g tej, (2.2 AT (att=0) in the ion track, and aiscous relaxatiorpart
while it is related to the displacement fiaidin the following gﬁg ;}[?é\i(rjle;g::glrg%osrtr?jZ?erri?rﬁggot?yiplg ttg(rengse?gtctféegv\gli
way: -

y tion AT(t).
1{ ou, &u-)
= =2 e 2.3
&ij 2( an &xi ( )

Il INITIAL STATE: INSTANTANEOUS THERMAL
For isotropic elastic media, the elastic strain tensg)ris LOADING

coupled to the stress tensaj by Hooke's law: . o .
The instantaneous thermal loading is a thermoelastic

e_ 1 v 5 24 problem that can be solved by starting from the equations of
&ij = 2u Tij T Ok ) 2.4 equilibriumgz.l). In case of cylindrical syrr_\metr(ym .d_ep.en-

i dence on circumferential angt, only a single equilibrium
whereu=E/[2(1+v)] is the shear modulus, aiflandv are  condition is left26
Young’s modulus and Poisson’s ratio, respectively. In Eq.

(2.9), o=011t 09t 033 IS the hydrostatic stresgegative
pressurg and g; is the Kronecker delta ;=1 for i=j,
;=0 fori#j). The elastic behavior of the material is there-

fogf described by two independent material paramétensd The direction of the stresses, (radia) and o, (hoop) are
V.

yshown in Fig. 1. The shear stresses, o,,, and o, vanish
due to the cylindrical symmetry. In the absence of viscous
flow the stress-strain relations given by E(&2), (2.4), and

doy, + I " %0 _

dr r

0. (3.1

The inelastic behavior of the material is described b
volume-conserving Newtonian viscous flow through

de’ . 1 (2.7) reduce to
==y, 2.5
dt 12y L
where & = E[‘Trr - V(0'60+ O'zz)] + aAT,
Sj = 0~ %Ukkélj (2.6)

are the components of the stress deviator ansl the mate-
rial's shear viscosity, which is strongly temperature depen-
dent. Note that viscous flow can occur only in a nonhydro-
static(i.e., deviatorig stress states; # 0. This is the basis for
the phenomenon of shear stress relaxation, although it should o= 1[0 — vy + 0]+ QAT
be noted that the shear stresses are not relaxed, but the de- S =~ ol '
viatoric stresses areé.

Finally, the last term in Eq(2.2) concerns the thermal For cylindrical symmetry the radial and hoop total strais,

strainSS}jh, which are given by ande, are determined solely by the radial displacemgnt

o= asTa, 2p v

where « is the coefficient of linear thermal expansion _du _ U 33
and AT=T-T, is the difference between the ion track g =g BT 3-3
cylinder’s temperatur@ and the temperature of the substrate

Ts

1
Egg= E[U%_ V(o + 0]+ aAT, (3.2

: ) . i In the absence of external forces, the total force in the axial
The governing equationg2.1~(2.5) and (2.7) describe  gjrection, F,, should vanish:

shear stress relaxation through viscous flow inside the ion
tracks. When an ion penetrates the sample it rapidly heats up b
a cylinder of radius. Due to the mismatch in thermal strain- F, J
ing (the elastic matrix around the ion track cylinder remains

at the substrate temperattfg so thate}Jh:O forr>a) and

the geometry of the ion track, nonhydrostatic stresses buildlVith Eq. (3.4) and the traction-free boundary condition
up. Above a so-defined flow temperatufé, the viscosity oy (r=b)=0, the solutions of Eqg3.1)—(3.3) for the normal
7(T) inside the ion track cylinder is low enough for the de- stress components are found%s

o, r)27rdr=0. (3.9
0
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aE | L (O
U"(r):;’l@fo AT(r')r’ dr —r—zfo AT(r")r’" dr ] _ 1t p\\ 1
R i
Zo
E 1 b I
Uga(r):a— —AT(r)+—2f AT(r')r" dr’ e
1_V b 0 @
S F — 0 -
1 r BE TTTTO,
+—2f AT(r')r’ dr’ |, (3.5 , [ O
rJo 2
1k
E|l2(° =
o fr) = — —Zf AT(r)r dr’ - AT(r) | =
1-v b 0 = 0
S
We assume a uniform temperature distribution within the %
thermal spike region and thus the ion track cylinder of radius = 4t
a is homogeneously heated 1q,, (AT=T 0 Ts= AT, for

r <a) while the surrounding material remains at the tempera- 0
ture Tg (AT=0 for a<r=<bh). For this specific temperature
profile, the stresses inside the ion track cylinttex a) from

Egs.(3.5 and the corresponding strains frgf2) are found FIG. 2. (a) Distribution of the stressesy, 4y, ando, and(b)
the strainse,;, 44, ande,, after instantaneous heating and expan-

to be
A sion of the ion track cylinder, as a function ofa [Egs.(3.6) and
aEAT, 3.7]. Results are plotted for=0.2 andb=4a (5=0.25.
Urr:U%:%O’zz:_2(1_;))(1_52), 3.7] P ( 3
aEAT
(1+2) + &(1-3) St = Sp =~ 35,,= 6L 0)(1—62). (3.9
&y S Egg= 21-1) alATy,  &5,= aATyé, v

(3.6)  These deviatoric stresses are the driving force for viscous
_ L ; straining according to Eq2.5), which will generate negative
where s=a/b. The result fora<r <b is given by viscous strains in the axial direction and positive viscous
aEAT, | [a)\? aEAT, | (a)? strains in the radial and hoop directions. The details of this
—2(1 ~) (F =& o= 2(1-1) F) +8, rglaxation process will be the subject of the next two sec-
tions.
In the surrounding materiala<r<b) the stresses and

O =~

Opy= aEATo , strains decay as 17. These solutions are identical to the
(1-v) well-known elastic solution for a thick-walled cylinder under
5 internal pressuré Note that for finite § the radial stress
__aATy ayv . vanishes atr=b, whereas the hoop stress does not, while
&y = (1+v) (1-3v8|, > AN :
2(1-v) r o+ 0y IS uniform ina<r<h.

Figure 2b) shows that within the heated regiars a, the
ATy a\? strains are uniform. The axial straén, is indeed constant as
=51, 1 +V)<F) +(1-3&|; e,=aAToé”.  was imposed by the condition of “generalized plane strain”
(Sec. I). For §—0 it follows from Egs.(3.6) and(3.7) that
(3.7 ¢,,=0, i.e., “plane strain.”
Equations(3.6) and (3.7) fully characterize the stress-strain 1 he Stress and strain distributions shown in Fig. 2 are the
distribution in the thermal spike and its surrounding materiafnitial conditions (at t=0) for the time-dependent viscous
upon instantaneous heating. Figurég) 2and 2b) show the flow in the ion track cylinder, as described next.
stress and strain distributions, respectively, calculated using
Egs.(3.6) and(3.7) for §=0.25 andv=0.2. The stresses are IV. GENERAL TIME-DEPENDENT SOLUTION FOR

normalized with «EAT/[2(1-v)] and the strains with VISCOUS FLOW IN SINGLE ION TRACKS
aATy/[2(1-v)]. Figure Za) shows that thecompressive
stresses are uniform inside the cylinder of radaisThis After the initial instantaneous heating &t0, the devia-

result also follows from Eshelby’s theory of ellipsoidal elas- toric stresses inside the ion track cylinder<a) may relax

tic inclusions as adopted by Trinkaus and RyazaAdihe  as long as the ion track temperature is above the flow tem-
axial stresgo;,) is compressive and is twice as large as theperature, i.e.T>T*. The governing equations for this stage
in-plane compressive stresges, , o). Since the stress ten- are different than those leading to the solution discussed in
sor is nonhydrostatic, there are deviatoric stresgeshich  Sec. lll, since now the viscous contributi@5) to the strain
follow from (2.6) and(3.6) to be (2.2) needs to be considered.

024103-4
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The equilibrium condition(3.1) is, in general, not suffi-
cient to determine the stress fields, but we can make use
the structure of the initial solution found in Sec. lll. Inside
the ion track(r <a), o, (r;t=0) ando,(r;t=0) are uniform

PHYSICAL REVIEW B 71, 024103(2005

of rr(t) - 800 t = [O'rr t) - Uzz(t)] (4.7)

AU 5 (t)
with 7(t) = 7»(T(t)). Sinceg;; (t 0)=0 it follows from Eq.

and equal. Since this holds for the initial state, the equilib{4.7) that e/ (t)= sae(t)__zszz(t) and therefore the total uni-

rium condition(3.1) remains satisfied identically when

0 (1) = ope(r;t) = c(t). (4.7

Herec(t) is a function that only depends on tinieln Ap-
pendix A it is shown that in this case the axial stressis
also uniform in this region.

For a<r=<b the initial solution in Eq.(3.7) satisfies
0 (r;1=0)+ay(r;t=0)=const. Using this result for each
time t and by applying the appropriate boundary conditions

lim o, (r;t) = o,(a;t), o, (r=b;t) =0, (4.2
rla

the solution of the equation of equilibrium &<<r=b is

2 _
o (r;t) = Urr(a;t)%z,
alr)’+ &°
a0 1) = - o,,(a;t)(lr)_—;. 4.3

As a result of Eq(4.3), o, is also uniform fora<r<b (see
Appendix A). Since the axial force resultaRt should vanish
in the absence of external forces and by making use of un
formity of the axial stresses in both regions, we find that

azi(a<rsb;t):—ozi(a;t)£. (4.4

At this stage we have shown that inside the ion-track cylin-
der (r=a) all stressesg, =0y, and o,, are uniform(and
therefore also all straifnsnd that in the surrounding elastic
material(a<r <b) o,,is uniform, whiles,, and o, have a
radial 142 dependence according to EG.3). Note that
through Egs(4.3) and(4.4) all stresses in the material follow
from the uniform stresses,(a;t) and o,fa;t) inside the

ion-track cylinder. To calculate the time evolution of these

stresses we use the constitutive equati@®—2.7) and the
following two continuity conditions at=a.

(1) Since the radial displacemenr ;t) must be continu-
ous atr=a it follows from Eg. (3.3 that the hoop strain
£4(r;t) should also be continuous eta:

lim &gy(r;t) =lim gy4(r;t). (4.5
rta rla

(2) Due to the condition of generalized plane strfie.,
g,4r;t)=¢,{t), independent of |:

lim e,(r;t) =lim g,/r;1). (4.6)
rla

rta
Forr=a it follows from Eqgs.(2.6) and(4.1) that s, =sy,=

-38,=3(0—0,,), so that from Eq(2.5) the viscous strain
rates are uniform, given by

form strams[s”(r t)=¢;;(t)] in Egs.(2.2—2.7) become

0l = ) = L1~ Do () = v, 0]+ 5,0 + abTO),

el = (4.8

1

E[Uzz(t) = 2vo ()] = 2¢/(t) + aAT(1).
Fora<r=bh, the strain in the elastic surrounding medium is
given by Eq.(2.4). Taking the limit forr —a and by using
Egs. (4.2 and(4.3) we find that

Iri[r; en(r;t) = é{(l + V%)O’rr(t) + V%Uﬂ(t)] ;
im 10 = é{— (04 22 )0+ V%“ﬁ(t)} ,
(4.9
1 &
lrl?; g4It = _|: 52“2{0 + ZVEUH(':)} )

where the stressas, (t) and o,t) are the uniform stresses
Ia'r,(a t) ando,4{a;t) in the ion-track cylinder. Inserting Egs.
(4.8 and (4.9 into the continuity condition$4.5) and(4.6)
results in two equations fow,,(t), o,At) and e/ (t). If we
then take the time derivative and use E4.7) to eliminate

the viscous strain rates, two differential equations can be
obtained for the radial and axial stresses inside the ion track:

207 (1) = vo {t) + [Un 1) = 0,{0)] + afEAT(1) =0,

6 (t)

04t = 2vo, (1) - [O'rr t) — o )]+ afEAT(t) 0,

3 7(t)
(4.10

with an initial condition, from Eq(3.6),

agEAT

21-v)’

with £€=1-6% An addition of the two equations in a proper

way gives a relation between the stress rates. By integrating

over time we obtain the following relation between, (t)
and o, (t):

O'rr(t: 0= %Uzz(t =0)=-

-2 3a§

o, dt) =~ 1= arr(t) AT(t) (4.11
With the aid of Eq.(4.11), the set of first-order differential
equationg4.10 can be reduced to a single second-order dif-

ferential equation for the radial viscous straif(t), through
Eq. (4.7):

024103-5
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+ .
B () + T(t) + ”() 1+v aAT(t) _0. 10
(t) 5-4v 1)
v _ “y _ afEATO I:E osk J
8”(0) - 0! 8rr(0) - 127]0(1 _ V) ’ (412) =
where (a)
— 2 00 §=1ol —
D) = 12(1 - v )@ (4.13 os| . -
5-4 ¢E ---o,
0.0
is the characteristic viscous flow time scale at time »;?
and 7=7(t=0)=7(T(t=0))=9(Tha, Iis the spike's g 08¢ N
thermal viscosity att=0. If T(t) and 7(T(t)) are known, Ca 10 ,/"' ]
the solution of Eq.(4.12 gives a full description of the o ,'/ (b)
viscous strains in ion tracks in a virgin sample without s M )
external stresses. By integrating E4.12) twice with respect 10f
to time, we find the following closed-form integral solution g=1.0/7 T
for e (t):
! dt’ | dt” w o] [ 0% !
en(t) afo AT(t )exp[ f” At )} A0)
4.14) ©
(. oof 1 L L !
This expression allows us to directly calculate the evolution /
of the viscous strains in both the high-temperature and the 2 '\\\ 1
(rapid) cooling phase of the ion track cylinder. In the next | TTT==—eg
section we will show how viscous strains are generated at @
spike temperature$>T* and how these strains are frozen " o
in upon subsequent cooling down. ﬂ?;" ~
---E
V. VISCOUS FLOW IN SINGLE ION TRACKS: RESULTS 2 . R R ) @
0 2 4 6 8 10
Calculations of flow in an ion cylinder can be performed v,

by numerically solving the differential equationg.10 ] _ _

for o, ando,,and(4.12) for &”, [or alternatively, evaluating _F'G- 3. (@ Time evolution of the ion track temperatufe (b)

Eq. (4.14]. The normalization of these equations allows ust"® corresponding stresses [0y =0y, (Solid line), o, (dashed

to perform general calculations without using specificl'nf)] _f(iro r(ST}'d (“(2 )the_gséséozzcliattfdd rlﬁ](g?lf \;lsrc<ous Sr:;ags

material-dependent parameters. To this end we have norm l‘;o ¢=1.0 (so ®, £=0. otte orr=a a

ized the temperatur@ with respect to the maximum tem- de Lesdm?ng fmacrogcsoep'c_rﬁefqrmat.'°E$f (SO:'.d Ic;ne)_;nd EEZZ
— . =0.36. t t .

peratureT,,,, inside the ion track. We used a temperature—( ashed ling for ¢ e time is normalized witio [Eq

. . . . (5.2]. Results are plotted using’=0.2, T¢/T=0.025 and
dependent shear viscosity(T) of the following empirical N Tha=6.8. Stresses are normalized witBAT, and the strains in

form: (c) and (d) with &* [Eq. (5.6)]. At the spike lifetimer,=67, the

(T = ¢1®/T, (5.1) temperature almost instantaneously drops fiiggg, to the substrate
temperatureT,

where ¢ and A are material-dependent paramet&rdn . ) , ,

normalizing the temperature witf, . in Eqs.(4.10, (4.12, S typically in 'tlre orlder of al.fe\'/v' plcosecqndsh_ Hth

and (4.14, with » from Eg. (5.1), we have used the F'{St \'Il'vet wi _gvat#at_e atlmllimg case thhI'Chtt e tem-

following normalized parameters for our numerical calculz‘;l-{)era_l_ure é) Insi et' e |_0rt1 rach rem_im?fat_a '9 detrrr]]pera-

tions: Te/ Tna=0.025 and\/ Tpa=6.82° Finally, the stresses € max dUMNG a ime Intervars (spike lifetimg and then

o were normalized withaEAT. and the timet was (almogh instantaneously dr(_)ps to the supstrgte temperature

1] : : 0 T.. This temperature evolution is shown in FigaB where
normalized with, the characteristic time for shear stress

T . . the (normalized ion track temperaturel/ T,y IS plotted as
relaxation in the ion track cylinder at temperatufgay, a function oft/r. In this calculation the spike lifetime;

given by has been chosen to be8o allow for nearly full relaxation
12(1 - 1A 7 of the stresses to their steady-state value. Since the tempera-
T e 4 E° (5.2 ture remains constant for< 7, the differential equations

(4.10 and (4.12 can easily be solved analytically since
In Eq. (5.2, 17,=7(Tman and Poisson’s ratie was chosento dr(t)/dt=0 and d\T(t)/dt=0. In this case the evolution of
be 0.2, a typical value for, e.g., silica glasses. The valug of the radial stress is given by
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1-2p t (Sec. Il the instantaneous cooling down is a simple elastic
on(t) = 2(1-)(5 - 4v) afEAT, exp - 5: problem. The stress field can be derived by using the same
0 continuity conditions atr=a (Sec. IV) and by taking the
B in-plane frozen-in viscous strain equald®. This yields the
5 _ 4, FATo, (5.3 following final stress state:
which reveals that the characteristic relaxation time scale is _ _ 1-2v CEAT
1ol é=15/[1-(a/b)?]. The axial stresso,ft) can then be T =To0= 2(1-)(5- 4,,)“ 0
found from Eq.(4.1J).
Figure 3b) shows the result of the numerical calculation 2-y

of the normalized radial stress, (t) (solid curve and axial 0,,= magEATO. (5.7

stresso, (t) (dashed curve as a function of/ 7, for the case
£=1.0, i.e.,b>a. The initial values ofo,, and o, are com-  Figure 3b) reveals that both stresses abruptly adapt to the
pressive, as given by E3.6) (normalized values of —0.625 instant temperature jump and reach valuesrpf (¢EAT,)

and -1.25, respectively During viscous flow, for =-0.089 ando,,/(«¢EAT,)=+0.54. The compressive radial

0= (t/7mp) < (7s/ 10)=6, the compressive radial stress in- stress and tensile axial stress are a direct consequence of the
creases, whereas the compressive axial stress decreadeszen-in viscous strains. Since the ion track has viscously
thereby reducing the deviatoric stresses. As can be seen gxpanded perpendicular to the ion beam, the in-plane stress
Fig. 3(b), this process continues until all stresses are equalemains compressive<0) whereas the axial stress becomes
(or=04s=0;) and a negative hydrostatic stress state isensile(>0) due to the viscous axial contraction. Said differ-
achieved. From Eqg5.3) and(4.1)) it immediately follows  ently, if the ion track would be cut out from its elastic sur-

that for i<t <, this stress is given by rounding medium, the only strains within the ion track cyl-
inder would be the viscous strains given by KE§.6). The
Oy = 0pg= 0= —P= afEAT,, (5.4)  cylinder would expand freely in the direction perpendicular

S—4v to the ion track with straire* and contract in the axial di-
|J'ection with strain —2* (to conserve volume Forcing the
cylinder back into the surrounding medium would imply that
it had to becompressedh the in-plane directiorfradial and
hoop and to bepulled on in the axial direction(tensile
stres$. Therefore, “an ion track penetrating a thin film acts
like al'iensioned string tight between the two surfaces of the
film.”

Figure 3c) also shows the radial viscous strain as a func-

N 1+ t tion of t/ 7, for £=0.36(dotted curvg i.e., a case where the

en(t) =epy(t) = = 587(t) = 5_—4yaATo<1 —exg - f: > sample’s edge at=b is located close to the ion track cylin-
0 der wall(b=1.2%). It can be seen that the characteristic time

(5.5 for shear stress relaxatiomy/ &, is now longer. As a conse-

Viscous strains thus build up at a characteristic time scale dfuénce, the fully relaxed hydrostatic stress state in the ion

wherep is the hydrostatic pressure inside the ion track afte
stress relaxation. From E@5.4) it follows that the hydro-
static stress state has a pressur@bfaEAT,)=3¢/(5-4v)
=0.714, as can also be seen in Fi¢h)3

For O=t= 7, the viscous strains resulting from the stress
relaxation can be found by solving E@.12) or by directly
calculating Eq(4.14), and are given by

7/ & and saturate at a limiting value of tr_ack cannot b_e achiev_ed Within_the spike Iifeti_me an(_i the
viscous strain is frozen in before it has reached its maximum
1+v value of ¢*. lon tracks very close to the edge of a sample
v v —_1 v _ % — AT (56) . .
Enr =8pp= T 2822= €7 5— 4V0‘ 0- : therefore should exhibit reduced viscous fi6w.

The situation described above is a limiting case in which

This is shown in Fig. &) where the in-plane viscous strain cooling occurs instantaneously. The effect of the cooling rate
e, Normalized withe*, is plotted as a function of/ 7, for ~ dT/dt on viscous flow in ion tracks can be studied by the
£=1 (solid curve. Starting ate/, =0 att=0, the in-plane numerical integration of Eq(4.12. As a first step toward
viscous strain increases and exponentially approaches itscorporating the effect of a temperature-time profile in the
saturation value ot*, which is reached at the end of the calculations, we study the case for an ion track cylinder
spike lifetime 7. Note that the result in Eq5.6), which  that cools down at a constant rate. Figur@)4shows an
follows from the time-dependent relaxation model as a lim-example of the ion track temperatufeas a function ot/ =,
iting case, was also found by Trinkaus and Ryazanov in thevhere the temperature again remains constant,aj for
“effective flow temperature approacht” t=<6m, after which the ion track cylinder cools down at a

Next, att/ 7y=6, the spike instantaneously cools down toconstant rate and reach@gat t=60r,. All parameters used
the substrate temperatufg[Fig. 3(@)]. The viscosityn thus  for this calculation are equal to those used in Fig. 3, i.e.,
changes from a small val{kquid) to a relatively large value  Tg/T;2,=0.025,N/T,,,=6.8, »=0.2, and¢=1.0. The solid
(solid), abruptly turning off viscous flow. As a result, the line in Fig. 4b) shows the calculated normalized in-plane
viscous strains given by E¢5.6) freeze in. This can be seen viscous strairg;,/¢* as a function oft/ 7,. For comparison,
in Fig. 3(c) whereg,, does not change upon the instant tem-the dashed line in Fig.(8) showse,./e* for infinitely large
perature quenching. As in the case of instantaneous heatirggoling rates and is identical to the solid line in Figc)3 For
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wob— T ] 2.67x 10
! @ logio 7=~ 7.7+, (5.9

with the temperaturd in K. If we extrapolate Eq(5.8) for

os} - temperatures higher than 1800 K and use typical elastic pa-

rameters for silicap=0.2 andu=34 GPa(E=81.6 GP#°?

the estimated value af* is between 3250 and 3750 K when

using typical thermal spike lifetimes between ¥0s and

o= it 1019s13 This implies that for irradiation conditions in

' which the thermal spike temperature does not reach

~3500 K, no anisotropic deformation is expected.

o In the preceding sections, we have derived an exact model
05 . to solve the anisotropic strain insingleion track cylinder,

assuming a homogeneous temperature distribution in the

spike for a spike durations, and a subsequent temperature

T,

e

(b) guenching profile. Experimental data on anisotropic defor-
00 =" 0 0 e mation are only available on systems that have imaitiple
v, ion impacts. For example, the well-characterized deforma-

tion of spherical colloidal particles with diameters-efl um

FIG. 4. (a) Time evolution of the ion track temperatufe and  is the overall effect of some $810 ions impacting on a
(b) the corresponding radial viscous strafp (solid line) for r <a. single colloid® In the next section we will describe how such
The time is normalized withr, the characteristic time for shear a macroscopic effect can be derived from the mesoscopic
stress relaxation in ion track cylinders at temperafljg, situated  model introduced above.
far away from the sample’s edd&q. (5.2)]. Results are plotted
using: v=0.2, Tg/ Tax=0.025,\ / T1,2=6.8, andé=1. The viscous VI. FROM MESOSCOPIC MODEL TO MACROSCOPIC
strain is normalized withe* [Eq. (5.6)]. The dashed curve ifb) DEFORMATION
represents the radial viscous strain upon instantaneous freezing in
[the solid line in Fig. &)]. Between 6, and 60 the temperature
decreases fromi,,, t0 Tg at a constant rateTd dt. The dotted lines
indicate the time and the effective flow temperat@iteat which the
viscous strains freeze in.

To show that the local viscous flow in single ion tracks is
the origin of the macroscopic deformation process, we have
to determine the change in the macroscopic sample dimen-
sions due to successive ion impacts.

Our sample is a disk of radidsand height, as sketched
in Fig. 1. During asingleion-induced thermal spike having

67, <t= 607, the temperature in the spike decreases, whictfn internal radial viscous strain ef,(t), the radius of the
again introduces deviatoric stresses in the ion track. Sincg@Mple changes withb(t) and its height withAh(t). From
o, —,, becomes negative, the in-plane viscous strain rateEd: (3-3) it follows that Ab(t) =u,(b;t) =be 44(b; 1), so that the
de’ /dt, is now negative according to E¢4.7). Therefore, ~Mmacroscopic radial straiBi, () can be written as
the material will exhibit viscous flow in the opposite direc- Ab(t)
tion (with respect to the flow fot<61) in order to relax En(t) = b =eq(b;1). (6.2)
these deviatoric stresses, shown by the initial decrease in the
solid curve of Fig. 4b). As the temperature continues to The macroscopic axial stral,(t) in the direction of the ion
decrease, the viscosity increases until it becomes too larggeam during a single ion impact can be found in a similar
for reverse viscous flow to continue on the time scale of thenanner and reads as
thermal spike. Hence, the in-plane viscous strain freezes in at Ah(t)
a value smaller than*, depending on the cooling ratélrddt E,{t) = —— = g,(1). (6.2
and the temperature dependence of the viscosity). In h
this particular example, the effective frozen-in viscous strainwe can therefore directly calculate the macroscopic strains
is 0.91* (solid line), 9% lower than the value for infinitely E,, andE,, resulting from a single ion impact using the me-
large cooling ratesdashed ling From Fig. 4 we can esti- soscopic model described in the previous sections. For the
mate the effective flow temperaturE*, below which no calculated example shown in Fig.(c3 with b=1.2%
stress relaxation occurs at the time scale of the thermal spik€5=0.8 or £=0.36, dotted ling the result is shown in Fig.
it amounts to~0.8T .« in this example(dotted lines. 3(d), whereE,, (solid line) andE,, (dashed lingare plotted

To estimate the value of* for a commonly irradiated as a function oft/ r,. This plot is obtained by numerically
material like silica glass, a material that exhibits large anisosolving a;,(t) and o,{t) from Eg. (4.10, substituting the
tropic plastic deformation under ion irradiatiénthe char-  solutions into Egs(4.3) and (4.4), and finally by usinge
acteristic time scaler for viscous flow in ion tracks, Eq. ande,, from Eq.(2.4) atr=b.
(4.13, can be set equal to the characteristic thermal spike Figure 3d) shows that just after the abrupt temperature
lifetime 744 For SiO, containing 0.12 wt.% water, the vis- increase at=0 the macroscopic strairifr a single ion im-
cosity (in Pa $ below about 1800 K is specified s pac) are equal and given by
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E,(t=0) = E,(t=0) = aAT&, (6.3 e 70 F. 6.9
which follows directly from Eq.(3.7). Next, for O<t< 7, eAAT*  epCAT*’
E. increases during deviatoric stress relaxation resultingynere e=expl) and AT*=T*-T. When the (time-

from the in-plane viscous expansipst, () > 0], whereass;;  gependenttemperature distribution inside the track is uni-
decreases due to the axial viscous contraciefy(t)=  form, the uniform in-plane viscous strairf at the end of a
—2e;, (1) <0]. Finally, att=7 the viscous strains freeze in thermal spike is equal te* [see Eq.(5.6)] for large track
during instantaneous temperature quenching, resulting in @ooling rates. In the case of large cooling rates but a nonuni-

net macroscopic expansion perpendicular to the ion beamgrm temperature distribution, we may replace Eg6) by
E,>0, and a net contraction parallel to the ion beam,an appropriate average,

E,,=—2E, <0.
In case the ion track cylinder has a frozen-in radial vis- e’ = 1+v AT (6.9)
cous strain ok*,33 the frozen-in macroscopic strains in Egs. " 5—4y ' '

(6.1) and (6.2 after a single ion impact can be directly cal- . . .
culated using Eqe5.7), (4.3), (4.4), and(2.4), resulting in where(AT) is the space- and time-averaged temperature in-
crease in the thermal spike. In Appendix B it is shown that,
E,=- %EZZE e* &°. (6.4)  for a Gaussian temperature distributiT) is given by’

Equation(6.4) clearly shows that the macroscopic deforma- (AT)=1.26T*-Ty). (6.10
tion is volume conserving.

After N independenibn impact$* distributedrandomly®®
over the sample surface, the total macroscopic deformation
simply a superposition of the individual “total” strains. Rec-

Replacinge* in Eq. (6.6) by ¢/, from Eq. (6.9 and by sub-
%tituting Eqgs.(6.8) and (6.10), the steady-state deformation
rate A now reads as

ognizing thatN=mb?¢, where ¢ is the ion fluence, we can 1.26 1+v aF,
rewrite the macroscopic deformation as A=— : (6.1
e 5-4v pC
E,=ma’s* ¢=-3iE,, (6.5)

Equation(6.5 immediately demonstrates that in the present VII. DISCUSSION: COMPARISON WITH EXPERIMENT
model the viscous flow in single ion tracks is the origin of
the macroscopic deformation process.

We point out that our derivation of the macroscopic de-
formations directly from the single-ion results is notably dif-  Klaumunzeret al. studied the expansion of silica foils
ferent from the averaging procedure adopted by Trinkausinder 360 MeV Xe ion irradiation at 100 K and determined
albeit yielding the same resttt. A=(8.0+£0.5 x 107*¢ cn?/ion 8 Taking F,' equal to the cor-

The rate of macroscopic deformatiof, defined as the responding stopping df.=15.1 keV/nm and using typical
differential length change perpendicular to the ion beam pematerial ~ parameters  of »=0.2, «@=0.6xX10°K™,
unit ion fluence, is given by p=2.2x10° kgm3andC=10° Jkg' K™, Eq.(6.11) yields

A=8.7x 10716 cn¥/ion, which is in close agreement with the

= experimental result. Using E¢6.8) with AT* ~3500 K for

=g* 7a, (6.6) - ) . . . .
dep silica, the estimated radius of the ion track cylinder is
) ~6 nm, which is close to the radius found by Toulemoetle
according to Eq(6.5. The value ofA can be computed once | in their thermal spike calculation for silicaat
the radius of the ion track is known. For an estimate, let ug =151 kev/nm.18
assume that the initial temperature distribution has the form
of a delta function along a linear ion track. Then the track
temperature at a distancdrom the ion track at timé can be
found by solving the classical heat conduction law and is As was shown for colloidal silica particles, significant an-

A. A at very high energy and low substrate
temperature

A

B. Energy dependence oA

given by?® isotropic deformation is observed at energies as low as
) 300 keV! and a linear increase of A with, is experimen-
) = r tally observed. This is in direct agreement with E6.11).
T(r;t)=— “A— [ +T,, 6. . . \ . .
i) t exp[ t ] S 6.7 The increase oA with F. is brought about by the increasing

_ _ cylindrical track radiusa [see Eqs(6.6) and(6.8)].
with Q=F_.'/(4m«) and A=pC/(4k). HereF,' is the part of

the electronic stoppingr, that is converted to heat in the
cylindrical thermal spike regiom is the mass density of the
material, x is the thermal conductivityC is the specific heat It has been experimentally observed for some silica as
capacity, andl is the substrate temperature. It is shown inwell as metallic glasses that no deformation occurs below a
Appendix B that for this Gaussian temperature distributionthreshold  electronic ~ stopping,  typically  around
the following relation can be found between the spike’s cros® keV/nm#3 This is in contrast to what we found for col-
sectionma® and the flow temperature*: loidal silica, where no threshold is observe®ne explana-

C. Threshold F, for anisotropic deformation
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tion for this difference may be the relatively low value of the the viscoelastic model. Finally, the experimental dependence
flow temperaturer* for colloidal silica compared to that of of the deformation rate on electronic stoppifgand irradia-
other amorphous materials. Indeed, the bulk melting temtion substrate temperatuflg is discussed and shows qualita-
perature of colloidal silica is several hundred K below that oftive agreement with the viscoelastic model.

fused silica.
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the viscoelastic model: the deviatoric stress resulting from
the thermal spikgsee Eqs.(2.6) and (5.7)] can be partly APPENDIX A: UNIFORMITY OF THE AXIAL STRESS
relaxed at elevated substrate temperatures. Additional calcu-
lations must be done to quantitatively study this effect.
Summarizing the comparison between experiment an
theory above, we conclude that the viscoelastic model pro-
vides an excellent qualitative and often quantitative represen- 0ij = 2ue] + Nef Sy, (A1)
tation of experimental results.

To show that the axial stress,, is uniform forr<a, we
rite Hooke’s law, Eq.(2.4) for isotropic elastic media, in
e form

where A\=k-(2/3)u is Lamé’s constant ank=E/[3(1
—2v)] the bulk modulus of elasticity. Using Eq#1), (2.2),
VIIl. CONCLUSIONS and(2.7) we then obtain

We have performed a detailed investigation of a vis-
coelastic thermal spike model describing viscous flow in ion
tracks as the origin of anisotropic deformation. First, the
track geometry and the imposed condition of “generalized
plane strain” were discussed. After assigning Maxwell's
model as the physical relevant model, the governing equa- 022= 285, &) + Ney— 3KaAT,
tions describing the flow were discussed in detail. By divid-
ing the analysis in a thermal loading and viscous relaxatio
part, we solved the equations yielding the time evolution o
the stresses an@iscous strains for a specific track tempera-

ture hlsto_ryT(_t)._A closelii—f(;rm Expre?smndfor the radial vis- as well. By taking the time derivative of axial stress in Eq.

cous strains In lon tracks has been found. _(A2) and substituting E(4.7), we can now write, for <a,
We have shown that for large track cooling rates the vis-

cous strains freeze in effectively, while for smaller cooling . 2m . 2u ) . :

rates reverse flow reduces the net viscous strains in the ion %zz* 3,777 2pezt 3,7 +M2e;r + 879 — 3kaAT.

track. The model also demonstrates that ion tracks close to

the edge exhibit reduced viscous flow with respect to tracks (A3)

located far away from the edge. All terms on the right-hand side of E¢A3) are clearly uni-
As a limiting case, for sufficiently large thermal spike form. Sincec,(t=0) is uniform[Eq. (3.6)], it follows from

lifetimes and instantaneous temperature quenching, the “efzq. (A3) that o, is uniform at each time.

fective flow temperature approach” as introduced by For the elastic surrounding medium<r<b, it follows

Trinkaus and Ryazanov follows directly from the viscoelasticfrom Eq. (A2) with AT=0,

model. For SiQ the effective flow temperatur&*, at which

o = 2ule — &) + Ny — 3KaAT,

Tgo= 2p(€ 99— €py) + N~ 3KaAT, (A2)

making use of the fact that viscous strains are volume pre-
erving, i.e.,ep=0. Sinceo,, =0y [EQ. (4.D] and g/, =gy,

[Eq. (4.7)], it follows from Eq.(A2) thate, =&4. From Eq.

(3.3 it immediately follows that botls,, ande,, are uniform

the viscous strains effectively freeze in, is about 3500 K. O = 2uer + Negg,
Next, we have shown that the frozen-in viscous strains of
individual ion impacts are the origin of the macroscopic an- 9= 204€ gp+ NEgier (A4)

isotropic deformation process. In particular, the macroscopic
deformation rate can be calculated directly from the mesos-
copic model by considering multiple, independent ion tracks
randomly penetrating the sample. that
Based on a Gaussian temperature profile the macroscopic
deformation rate has been calculated. For vitreous silica ir-
radiated with 360 MeV Xe ions at low irradiation tempera- According to Eq.(4.3), o, + 0y, is uniform and from Eq.
tures the experimentally observed deformation rate byADS) it then follows thate,, +&, is uniform and therefore
Klauminzeret al. agrees well with the calculated value from as well. Thusg,, is also uniform ovea<r<h.

O2= 21857+ Ney,

O+ 0g9=2(u+ N) (& + £9g) + 2\E5, (A5)
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R(t) = \/i In{ms_)* tJ :a\/ti*<1+ln{%J>. (B3)

Since 0<R(t) <a, the time interval for which the track tem-
peratures exceetl* therefore equald* <t=<et*. First, we
determine the spatial average at a fixed tinoger the region
r<R(t):

APPENDIX B: THERMAL SPIKE'S CROSS-SECTION
AND AVERAGE TEMPERATURE

For the Gaussian temperature profile given by &9
the maximum temperature at radial distamds

QO
Trmalr) = onr2 T (B1)

occurring att=Ar?. The radius =a is defined as the radius
of the cylinder where the maximum temperatrg,, just
reaches the flow temperatufé at time t=t*. Hence,
5w

A= B2
T T eAAT* (B2)

with AT*=T*- T,

Since viscous strains are generated at temperatures abo

the flow temperaturd™, the appropriate average track tem-
perature increas@\T) can be found by averaging the tem-
perature differenceAT(r;t) over space and time where
T=T*, starting att=t*. We therefore consider the region
r<R(t) <a with its boundary, specified bi{f(R(t);t)=T*,
moving towards the center. At timet=t*=Aa?
=/ (eAT*) the radiusR(t) of the region for whichl = T* is
given by

)
(ATH (1) = e f AT(r;t)27rdr
m 0

e—t/t*
CtF ) (L - It * ])AT ' (B4)

Neéxt, the average track temperature increas€) can be
found by averaging this mean val(&T)(t) over the relevant
time intervalt* <t=<et*, resulting in

1 er AT* (¢ e-x
<AT>=—t*(e_1) Jt ~ (AD(bdt= f

L X))
(85)

e-1
=1.26AT*.
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