67 research outputs found

    Low-Mass Relics of Early Star Formation

    Full text link
    The earliest stars to form in the Universe were the first sources of light, heat and metals after the Big Bang. The products of their evolution will have had a profound impact on subsequent generations of stars. Recent studies of primordial star formation have shown that, in the absence of metals (elements heavier than helium), the formation of stars with masses 100 times that of the Sun would have been strongly favoured, and that low-mass stars could not have formed before a minimum level of metal enrichment had been reached. The value of this minimum level is very uncertain, but is likely to be between 10^{-6} and 10^{-4} that of the Sun. Here we show that the recent discovery of the most iron-poor star known indicates the presence of dust in extremely low-metallicity gas, and that this dust is crucial for the formation of lower-mass second-generation stars that could survive until today. The dust provides a pathway for cooling the gas that leads to fragmentation of the precursor molecular cloud into smaller clumps, which become the lower-mass stars.Comment: Offprint of Nature 422 (2003), 869-871 (issue 24 April 2003

    Formation History of Metal-Poor Halo Stars with Hierarchical Model and the Effect of ISM accretion on the Most Metal-Poor Stars

    Full text link
    We investigate the star formation and chemical evolution in the early universe by considering the merging history of the Galaxy in the {\Lambda}CDM scenario according to the extended Press-Schechter theory. We give some possible constraints from comparisons with observation of extremely metal-poor (EMP) stars. We demonstrate that (1) The hierarchical structure formation can explain the characteristics of the observed metallicity distribution function (MDF) including a break around [Fe/H]~-4. (2) A high mass IMF of peak mass ~10Msun with the contribution of binaries, derived from the statistics of carbon enhanced EMP stars (Komiya et al. 2007), predicts the frequency of low-mass survivors consistent with the number of EMP stars observed for -4~<[Fe/H]~<-2.5. (3) The stars formed from primordial gas before the first supernova explosions in their host mini-halos are assigned to the HMP stars with [Fe/H]~-5. (4) There is no indication of significant changes in the IMF and the binary contribution at metallicity -4~<[Fe/H]~<-2.5, or even larger as long as the field stars of Galactic halo are concerned. We further study the effects of the surface pollution through the accretion of ISM along the chemical and dynamical evolution of the Galaxy for low-mass Pop.III and EMP survivors. Because of shallower potential of smaller halos, the accretion of ISM in the mini-halos in which these stars were born dominates the surface metal pollution. This can account for the surface iron abundances as observed for the HMP stars if the cooling and concentration of gas in their birth mini-halos is taken into account. We also study the feedback effect from the very massive Pop. III stars. The metal pre-pollution by PISNe is shown to be compatible with the observed lack of their nucleosynthetic signatures when some positive feedback on gas cooling works and changes IMF from being very massive to being high mass.Comment: 20 pages, 14 figures. ApJ accepte

    Observing H2 Emission in Forming Galaxies

    Full text link
    We study the H2 cooling emission of forming galaxies, and discuss their observability using the future infrared facility SAFIR. Forming galaxies with mass >10^11 Msun emit most of their gravitational energy liberated by contraction in molecular hydrogen line radiation, although a large part of thermal energy at virialization is radiated away by the H Ly alpha emission. For more massive objects, the degree of heating due to dissipation of kinetic energy is so great that the temperature does not drop below 10^4 K and the gravitational energy is emitted mainly by the Ly alpha emission. Therefore, the total H2 luminosity attains the peak value of about 10^42 ergs/s for forming galaxies whose total mass 10^11 Msun. If these sources are situated at redshift z=8, they can be detected by rotational lines of 0-0S(3) at 9.7 micron and 0-0S(1) at 17 micron by SAFIR. An efficient way to find such H2 emitters is to look at the Ly alpha emitters, since the brightest H2 emitters are also luminous in the Ly alpha emission.Comment: 20 pages, 7 figures, ApJ accepte

    The mass spectrum of metal-free Stars resulting from photodissociation feedback: A scenario for the formation of low-mass population III stars

    Full text link
    The initial mass function (IMF) of metal-free stars that form in the initial starburst of massive (virial temperatures >10^4K) metal-free protogalaxies is studied. In particular, we focus on the effect of H2 photodissociation by pre-existing stars on the fragmentation mass scale, presumedly determined by the Jeans mass at the end of the initial free-fall phase, i.e., at the so-called ``loitering phase,'' characterized by the local temperature minimum. Photodissociation diminishes the Jeans mass at the loitering phase, thereby reducing the fragmentation mass scale of primordial clouds. Thus, in a given cloud, far ultraviolet (FUV) radiation from the first star, which is supposedly very massive (about 10^3Msun), reduces the mass scale for subsequent fragmentation. Through a series of similar processes the IMF for metal-free stars is established. If FUV radiation exceeds a threshold level, the star-forming clumps collapse solely through atomic cooling. Correspondingly, the fragmentation scale drops discontinuously from a few time 10Msun to sub-solar scales. In compact clouds (>1.6kpc for clouds of gas mass 10^8Msun), this level of radiation field is attained, and sub-solar mass stars are formed even in a metal-free environment. Consequently, the IMF becomes bi-modal, with peaks at a few tenths of Msun and a few times 10Msun. The high-mass portion of the IMF is found to be a very steep function of the stellar mass, xi_high(m) being proportinal to m^{-5}. Therefore, the typical mass scale of metal-free stars is significantly smaller than that of the very first stars. Also we study the thermal instability in collapsing primordial prestellar clumps, and discuss why the thermal instability occuring during the three-body H2 formation does not appear to manifest itself in causing further fragmentation of such clumps.Comment: 34 pages, 6 figures, ApJ accepte

    Protostellar Collapse with Various Metallicities

    Get PDF
    The thermal and chemical evolution of gravitationally collapsing protostellar clouds is investigated, focusing attention on their dependence on metallicity. Calculations are carried out for a range of metallicities spanning the local interstellar value to zero. During the time when clouds are transparent to continuous radiation, the temperatures are higher for those with lower metallicity, reflecting lower radiative ability. However, once the clouds become opaque, in the course of the adiabatic contraction of the transient cores, their evolutionary trajectories in the density-temperature plane converge to a unique curve that is determined by only physical constants. The trajectories coincide with each other thereafter. Consequently, the size of the stellar core at the formation is the same regardless of the gas composition of the parent cloud.Comment: 30 pages. The Astrophysical Journal, 533, in pres

    Stochastic backgrounds of gravitational waves from extragalactic sources

    Full text link
    Astrophysical sources emit gravitational waves in a large variety of processes occurred since the beginning of star and galaxy formation. These waves permeate our high redshift Universe, and form a background which is the result of the superposition of different components, each associated to a specific astrophysical process. Each component has different spectral properties and features that it is important to investigate in view of a possible, future detection. In this contribution, we will review recent theoretical predictions for backgrounds produced by extragalactic sources and discuss their detectability with current and future gravitational wave observatories.Comment: 10 pages, 9 figures, proceedings of the GWDAW 10 Conference, submitted to Class. & Quantum Gra

    The Formation of the First Low-Mass Stars From Gas With Low Carbon and Oxygen Abundances

    Full text link
    The first stars in the Universe are predicted to have been much more massive than the Sun. Gravitational condensation accompanied by cooling of the primordial gas due to molecular hydrogen, yields a minimum fragmentation scale of a few hundred solar masses. Numerical simulations indicate that once a gas clump acquires this mass, it undergoes a slow, quasi-hydrostatic contraction without further fragmentation. Here we show that as soon as the primordial gas - left over from the Big Bang - is enriched by supernovae to a carbon or oxygen abundance as small as ~0.01-0.1% of that found in the Sun, cooling by singly-ionized carbon or neutral oxygen can lead to the formation of low-mass stars. This mechanism naturally accommodates the discovery of solar mass stars with unusually low (10^{-5.3} of the solar value) iron abundance but with a high (10^{-1.3} solar) carbon abundance. The minimum stellar mass at early epochs is partially regulated by the temperature of the cosmic microwave background. The derived critical abundances can be used to identify those metal-poor stars in our Milky Way galaxy with elemental patterns imprinted by the first supernovae.Comment: 14 pages, 2 figures (appeared today in Nature

    First-generation black-hole-forming supernovae and the metal abundance pattern of a very iron-poor star

    Full text link
    It has been proposed theoretically that the first generation of stars in the Universe (population III) would be as massive as 100 solar masses (100Mo), because of inefficient cooling of the precursor gas clouds. Recently, the most iron-deficient (but still carbon-rich) low-mass star -- HE0107-5240 -- was discovered. If this is a population III that gained its metals (elements heavier than helium) after its formation, it would challenge the theoretical picture of the formation of the first stars. Here we report that the patterns of elemental abundance in HE0107-5240 (and other extremely metal-poor stars) are in good accord with the nucleosynthesis that occurs in stars with masses of 20-130Mo when they become supernovae if, during the explosions, the ejecta undergo substantial mixing and fall-back to form massive black holes. Such supernovae have been observed. The abundance patterns are not, however, consistent with enrichment by supernovae from stars in the range 130-300 Mo. We accordingly infer that the first-generation supernovae came mostly from explosions of ~ 20-130Mo stars; some of these produced iron-poor but carbon- and oxygen-rich ejecta. Low-mass second-generation stars, like HE0107-5240, could form because the carbon and oxygen provided pathways for gas to cool.Comment: To appear in NATURE 422 (2003), 871-873 (issue 24 April 2003); Title and the first paragraph have been changed and other minor corrections have been mad

    Formation of Primordial Stars in a LCDM Universe

    Get PDF
    We study the formation of the first generation of stars in the standard cold dark matter model, using a very high-resolution hydordynamic simulations. Our simulation achieves a dynamic range of 10^{10} in length scale. With accurate treatment of atomic and molecular physics, it allows us to study the chemo-thermal evolution of primordial gas clouds to densities up to n = 10^{16}/cc without assuming any a priori equation of state; a six orders of magnitudes improvement over previous three-dimensional calculations. All the relevant atomic and molecular cooling and heating processes, including cooling by collision-induced continuum emission, are implemented. For calculating optically thick H2 cooling at high densities, we use the Sobolev method. To examine possible gas fragmentation owing to thermal instability, we compute explicitly the growth rate of isobaric perturbations. We show that the cloud core does not fragment in either the low-density or high-density regimes. We also show that the core remains stable against gravitational deformation and fragmentation. We obtain an accurate gas mass accretion rate within a 10 Msun innermost region around the protostar. The protostar is accreting the surrounding hot gas at a rate of 0.001-0.01 Msun/yr. From these findings we conclude that primordial stars formed in early minihalos are massive. We carry out proto-stellar evolution calculations using the obtained accretion rate. The resulting mass of the first star is M_ZAMS = 60-100 Msun, with the exact mass dependent on the actual accretion rate.Comment: 27 pages, 13 embedded figures. Revised versio

    Direct Formation of Supermassive Black Holes via Multi-Scale Gas Inflows in Galaxy Mergers

    Full text link
    Observations of distant bright quasars suggest that billion solar mass supermassive black holes (SMBHs) were already in place less than a billion years after the Big Bang. Models in which light black hole seeds form by the collapse of primordial metal-free stars cannot explain their rapid appearance due to inefficient gas accretion. Alternatively, these black holes may form by direct collapse of gas at the center of protogalaxies. However, this requires metal-free gas that does not cool efficiently and thus is not turned into stars, in contrast with the rapid metal enrichment of protogalaxies. Here we use a numerical simulation to show that mergers between massive protogalaxies naturally produce the required central gas accumulation with no need to suppress star formation. Merger-driven gas inflows produce an unstable, massive nuclear gas disk. Within the disk a second gas inflow accumulates more than 100 million solar masses of gas in a sub-parsec scale cloud in one hundred thousand years. The cloud undergoes gravitational collapse, which eventually leads to the formation of a massive black hole. The black hole can grow to a billion solar masses in less than a billion years by accreting gas from the surrounding disk.Comment: 26 pages, 4 Figures, submitted to Nature (includes Supplementary Information
    • …
    corecore