28 research outputs found

    Design, synthesis, and evaluation of 3,7-substituted coumarin derivatives as multifunctional Alzheimer’s disease agents

    Get PDF
    Multitarget directed ligands (MTDLs) are emerging as promising treatment options for Alzheimer’s disease (AD). Coumarin derivatives serve as a good starting point for designing MTDLs due to their inherent inhibition of monoamine oxidase (MAO) and cholinesterase enzymes, which are complicit in AD’s complex pathophysiology. A preliminary series of 3,7-substituted coumarin derivatives were synthesised and evaluated for enzyme inhibitory activity, cytotoxicity as well as neuroprotective ability. The results indicated that the compounds are weak cholinesterase inhibitors with five compounds demonstrating relatively potent inhibition and selectivity towards MAO-B with IC50 values between 0.014 and 0.498 hx00B5;mM. Significant neuroprotective effects towards MPPþ-compromised SH-SY5Y neuroblastoma cells were also observed, with no inherent cytotoxicity at 10 mM for all compounds. The overall results demonstrated that substitution of the phenylethyloxy moiety at the 7-position imparted superior general activity to the derivatives, with the propargylamine substitution at the 3-position, in particular, displaying the best MAO-B selectivity and neuroprotection

    The evolving SARS-CoV-2 epidemic in Africa: insights from rapidly expanding genomic surveillance

    Get PDF
    Investment in SARS-CoV-2 sequencing in Africa over the past year has led to a major increase in the number of sequences generated, now exceeding 100,000 genomes, used to track the pandemic on the continent. Our results show an increase in the number of African countries able to sequence domestically, and highlight that local sequencing enables faster turnaround time and more regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and shed light on the distinct dispersal dynamics of Variants of Concern, particularly Alpha, Beta, Delta, and Omicron, on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve, while the continent faces many emerging and re-emerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Drug-drug interactions and QT prolongation as a commonly assessed cardiac effect - comprehensive overview of clinical trials

    Full text link

    Emergence and spread of two SARS-CoV-2 variants of interest in Nigeria.

    Get PDF
    Identifying the dissemination patterns and impacts of a virus of economic or health importance during a pandemic is crucial, as it informs the public on policies for containment in order to reduce the spread of the virus. In this study, we integrated genomic and travel data to investigate the emergence and spread of the SARS-CoV-2 B.1.1.318 and B.1.525 (Eta) variants of interest in Nigeria and the wider Africa region. By integrating travel data and phylogeographic reconstructions, we find that these two variants that arose during the second wave in Nigeria emerged from within Africa, with the B.1.525 from Nigeria, and then spread to other parts of the world. Data from this study show how regional connectivity of Nigeria drove the spread of these variants of interest to surrounding countries and those connected by air-traffic. Our findings demonstrate the power of genomic analysis when combined with mobility and epidemiological data to identify the drivers of transmission, as bidirectional transmission within and between African nations are grossly underestimated as seen in our import risk index estimates

    A year of genomic surveillance reveals how the SARS-CoV-2 pandemic unfolded in Africa.

    Get PDF
    The progression of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in Africa has so far been heterogeneous, and the full impact is not yet well understood. In this study, we describe the genomic epidemiology using a dataset of 8746 genomes from 33 African countries and two overseas territories. We show that the epidemics in most countries were initiated by importations predominantly from Europe, which diminished after the early introduction of international travel restrictions. As the pandemic progressed, ongoing transmission in many countries and increasing mobility led to the emergence and spread within the continent of many variants of concern and interest, such as B.1.351, B.1.525, A.23.1, and C.1.1. Although distorted by low sampling numbers and blind spots, the findings highlight that Africa must not be left behind in the global pandemic response, otherwise it could become a source for new variants

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance.

    Get PDF
    Investment in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing in Africa over the past year has led to a major increase in the number of sequences that have been generated and used to track the pandemic on the continent, a number that now exceeds 100,000 genomes. Our results show an increase in the number of African countries that are able to sequence domestically and highlight that local sequencing enables faster turnaround times and more-regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and illuminate the distinct dispersal dynamics of variants of concern-particularly Alpha, Beta, Delta, and Omicron-on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve while the continent faces many emerging and reemerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Acute Hepatitis E Virus Infection in Two Geographical Regions of Nigeria

    No full text
    Hepatitis E virus (HEV) remains a major public health concern in resource limited regions of the world. Yet data reporting is suboptimal and surveillance system is inadequate. In Nigeria, there is dearth of information on prevalence of acute HEV infection. This study was therefore designed to describe acute HEV infection among antenatal clinic attendees and community dwellers from two geographical regions in Nigeria. Seven hundred and fifty plasma samples were tested for HEV IgM by Enzyme Linked Immunosorbent Assay (ELISA) technique. The tested samples were randomly selected from a pool of 1,115 blood specimens previously collected for viral hepatitis studies among selected populations (pregnant women, 272; Oyo community dwellers, 438; Anambra community dwellers, 405) between September 2012 and August 2013. One (0.4%) pregnant woman in her 3rd trimester had detectable HEV IgM, while community dwellers from the two study locations had zero prevalence rates of HEV IgM. Detection of HEV IgM in a pregnant woman, especially in her 3rd trimester, is of clinical and epidemiological significance. The need therefore exists for establishment of a robust HEV surveillance system in Nigeria and especially amidst the pregnant population in a bid to improve maternal and child health

    Simeprevir and daclatasvir for 12 or 24 weeks in treatment-naive patients with hepatitis C virus genotype 1b and advanced liver disease

    No full text
    BACKGROUND & AIMS: We investigated the efficacy and safety of simeprevir plus daclatasvir in treatment-naive patients with chronic, genotype 1b hepatitis C virus infection and advanced liver disease, excluding patients with pre-defined NS5A resistance-associated substitutions. METHODS: This phase II, open-label, single-arm, multicentre study included patients aged >/=18 years with advanced fibrosis or compensated cirrhosis (METAVIR F3/4). Patients with NS5A-Y93H or L31M/V resistance-associated substitutions at screening were excluded. Simeprevir (150 mg)+daclatasvir (60 mg) once daily was administered for 12 or 24 weeks; treatment could be extended to 24 weeks prior to or at the Week 12 visit. Primary efficacy endpoint was sustained virological response 12 weeks after the end of treatment. RESULTS: A total of 106 patients were treated; 27% patients were aged >65 years, 39% had cirrhosis, 53% had estimated glomerular filtration rate 30-89 mL/min, 14% had diabetes, and 38% had arterial hypertension. Overall, 42/106 received 12 weeks of treatment and 64/106 received 24 weeks of treatment. Ninety-seven (92%) patients achieved a sustained virological response 12 weeks after the end of treatment. The reasons for failure were viral breakthrough (n=7) at weeks 4-16, early treatment discontinuation (n=1) and viral relapse (n=1). Seventy-four (70%) patients had >/=1 adverse event during treatment, including six (6%) patients with >/=1 serious adverse event. Three (3%) patients discontinued treatment owing to adverse events. CONCLUSIONS: Simeprevir+daclatasvir demonstrated strong antiviral activity and was well-tolerated in patients with hepatitis C virus genotype 1b infection, advanced liver disease and a high prevalence of comorbidities. However, viral breakthrough occurred in seven patients, making this regimen unsatisfactory
    corecore