7 research outputs found
Seasonal malaria chemoprevention packaged with malnutrition prevention in northern Nigeria: A pragmatic trial (SMAMP study) with nested case-control.
Integrating seasonal malaria chemoprevention (SMC), recommended by the WHO since 2012 to prevent malaria infection, with nutrition interventions may improve health outcomes and operational efficiencies. This study assessed the effects of co-packaging interventions on distribution coverage, nutrition, and clinical malaria outcomes in northern Nigeria. From August to November 2014, community volunteers delivered sulfadoxine-pyrimethamine and amodiaquine (SP-AQ) door-to-door each month to approximately 7,000 children aged 6-24 months in seven wards of Madobi, Kano State, Nigeria. In three of the wards children additionally received a lipid-based nutrient supplement (LNS-medium quantity), Plumpy Doz. Coverage, adherence, and anthropometric outcomes were assessed through baseline, midline, and endline household surveys. A facility-based case-control study was also conducted to estimate impact on clinical malaria outcomes. Coverage of SP-AQ was similar between arms at 89% (n = 2,409 child-months [88-90%]) in the SP-AQ only arm and 90% (n = 1,947 child-months [88-92%]) in the SP-AQ plus LNS arm (p = 0.52). Coverage of LNS was 83% (n = 2,409 child-months [81-84%]). Whilst there were marked changes in anthropometric status between baseline, midline and endline, these were largely accounted for by socioeconomic status and must be interpreted with care due to possible measurement issues, especially length-based indices. Overall nutritional status of our most robust measure, weight-for-age, does appear to have improved by endline, but was similar in the two study arms, suggesting no additional benefit of the LNS. While the odds of clinical malaria among those who received the intended intervention were lower in each study arm compared to children who did not receive interventions (SP-AQ only OR = 0.23 [0.09-0.6]; SP-AQ plus LNS OR = 0.22 [0.09-0.55]), LNS was not shown to have an additional impact. Coverage of SMC was high regardless of integrating LNS delivery into the SMC campaign. Supplementation with LNS did not appear to impact nutritional outcomes, but appeared to enhance the impact of SP-AQ on clinical odds of malaria. These results indicate that combining nutritional interventions with seasonal malaria chemoprevention in high-risk areas can be done successfully, warranting further exploration with other products or dosing. Trial Registration: ISRCTN 11413895
Genome-wide association study identifies human genetic variants associated with fatal outcome from Lassa fever
Infection with Lassa virus (LASV) can cause Lassa fever, a haemorrhagic illness with an estimated fatality rate of 29.7%, but causes no or mild symptoms in many individuals. Here, to investigate whether human genetic variation underlies the heterogeneity of LASV infection, we carried out genome-wide association studies (GWAS) as well as seroprevalence surveys, human leukocyte antigen typing and high-throughput variant functional characterization assays. We analysed Lassa fever susceptibility and fatal outcomes in 533 cases of Lassa fever and 1,986 population controls recruited over a 7 year period in Nigeria and Sierra Leone. We detected genome-wide significant variant associations with Lassa fever fatal outcomes near GRM7 and LIF in the Nigerian cohort. We also show that a haplotype bearing signatures of positive selection and overlapping LARGE1, a required LASV entry factor, is associated with decreased risk of Lassa fever in the Nigerian cohort but not in the Sierra Leone cohort. Overall, we identified variants and genes that may impact the risk of severe Lassa fever, demonstrating how GWAS can provide insight into viral pathogenesis
Recommended from our members
Discovery of Novel Rhabdoviruses in the Blood of Healthy Individuals from West Africa
Next-generation sequencing (NGS) has the potential to transform the discovery of viruses causing unexplained acute febrile illness (UAFI) because it does not depend on culturing the pathogen or a priori knowledge of the pathogen’s nucleic acid sequence. More generally, it has the potential to elucidate the complete human virome, including viruses that cause no overt symptoms of disease, but may have unrecognized immunological or developmental consequences. We have used NGS to identify RNA viruses in the blood of 195 patients with UAFI and compared them with those found in 328 apparently healthy (i.e., no overt signs of illness) control individuals, all from communities in southeastern Nigeria. Among UAFI patients, we identified the presence of nucleic acids from several well-characterized pathogenic viruses, such as HIV-1, hepatitis, and Lassa virus. In our cohort of healthy individuals, however, we detected the nucleic acids of two novel rhabdoviruses. These viruses, which we call Ekpoma virus-1 (EKV-1) and Ekpoma virus-2 (EKV-2), are highly divergent, with little identity to each other or other known viruses. The most closely related rhabdoviruses are members of the genus Tibrovirus and Bas-Congo virus (BASV), which was recently identified in an individual with symptoms resembling hemorrhagic fever. Furthermore, by conducting a serosurvey of our study cohort, we find evidence for remarkably high exposure rates to the identified rhabdoviruses. The recent discoveries of novel rhabdoviruses by multiple research groups suggest that human infection with rhabdoviruses might be common. While the prevalence and clinical significance of these viruses are currently unknown, these viruses could have previously unrecognized impacts on human health; further research to understand the immunological and developmental impact of these viruses should be explored. More generally, the identification of similar novel viruses in individuals with and without overt symptoms of disease highlights the need for a broader understanding of the human virome as efforts for viral detection and discovery advance
Sero-positivity to EKV-1 and EKV-2.
<p>A serosurvey for EKV-1 and EKV-2 was performed on Nigerian samples (n = 320). Cut-off values were based on the mean of US normals (n = 137) plus either 3xSD or 5xSD (SD = standard deviation).</p><p>Sero-positivity to EKV-1 and EKV-2.</p
Examples of rhabdoviruses reported in Africa.
<p>A map depicting examples of rhabdoviruses isolated in sub-Saharan Africa. This map does not depict the current distribution of rhabdoviruses in Sub-Saharan Africa, nor is it meant as a comprehensive listing of all rhabdoviruses isolated in Africa; rather its purpose is to illustrate that many rhabdoviruses have been discovered throughout Africa over the past half-century. Country refers to the sample’s country of origin. Abbreviations: CAR, Central African Republic; DRC, Democratic Republic of Congo.</p
Sequencing results and schematic representation of the EKV-1 and -2 genome organization.
<p>(<b>A</b>) Overview of the data generated for each novel rhabdovirus. (<b>B</b>) A schematic showing the assembled genomes, consisting of the following genes: <i>nucleoprotein</i> (N), <i>phosphoprotein</i> (P), <i>matrix</i> (M), <i>U1</i>/<i>U2</i>/<i>U3</i> (uncharacterized accessory proteins), <i>glycoprotein</i> (G), and <i>polymerase</i> (L). We indicate in orange (EKV-1) and blue (EKV-2) segments of the viral genomes that could not be assembled from Illumina reads and instead Sanger sequenced. (<b>C</b>) Coverage plots of the final viral genomes.</p