32 research outputs found

    Temporal Rac1 – HIF-1 crosstalk modulates hypoxic survival of aged neurons

    Full text link
    Neurodegenerative diseases are frequently associated with hypoxic conditions. During hypoxia the neuronal cytoskeleton is rapidly reorganized and such abnormalities are directly linked to adverse outcomes. Besides their roles as master regulators of the cytoskeleton, the Rho GTPases are also involved in cellular processes stimulated by hypoxic stress. We investigated the contribution of Rac1-mediated signaling to hypoxic responses of mature neurons using primary cortical cells cultured for 17 days in vitro. We show Rac1 is both upregulated and activated during hypoxia. Pharmacological inhibition of Rac1, but not RhoA, completely abrogated hypoxic HIF-1α stabilization and expression of the HIF-1 targets VEGF and GLUT1. Furthermore activity of JNK and GSK3β were also highly dependent on Rac1 activity and biphasic effects were observed after 6 and 24 h of exposure. Notably, inhibition of either pathway suppressed HIF-1α accumulation. Although inhibition of Rac1 did not affect neuronal viability during acute exposure cell death was strongly induced after 24 h revealing a time-dependent effect of Rac1 signaling on survival. Thus hypoxia-activated Rac1 is critical for neuronal HIF-1α stabilization and survival during oxygen deprivation via integration of complex signaling cascades

    Furin inhibition prevents hypoxic and TGFβ-mediated blood-brain barrier disruption

    Full text link
    Hypoxic blood-brain barrier (BBB) dysfunction is a common feature of CNS diseases however mechanisms underlying barrier disturbance are still largely unknown. This study investigated the role of transforming growth factor β (TGFβ), a cytokine known to induce expression of the proprotein convertase Furin, in hypoxia-mediated barrier compromise.We show that exposure of brain endothelial cells (ECs) to hypoxia (1% O2) rapidly stimulates their migration. Additional exogenous TGFβ (0.4nM) exposure potentiated this effect and increased Furin expression in a TGFβ type I receptor activin-like kinase 5 (ALK5) - dependent manner (prevented by 10μM SB431542). Furin inhibition prevented hypoxia-induced EC migration and blocked TGFβ-induced potentiation suggesting existence of a feedback loop. TGFβ and Furin were also critical for hypoxia-induced BBB dysfunction. TGFβ treatment aggravated hypoxia-induced BBB permeability but ALK5 or Furin blockade reversed injury-induced permeability changes. Thus during insult Furin compromises endothelial integrity by mediating the effects of TGFβ. Targeting the Furin or ALK5 pathway may offer novel therapeutic strategies for improving BBB stability and CNS function during disease

    Transcryptomic Analysis of Human Brain-Microvascular Endothelial Response to -Pericytes: Cell Orientation Defines Barrier Function

    Get PDF
    Pericytes facilitate blood–brain barrier (BBB) integrity; however, the mechanisms involved remain unclear. Hence, using co-cultures of human cerebral microvascular endothelial cells (ECs) and vascular pericytes (PCs) in different spatial arrangements, as well as PC conditioned media, we investigated the impact of PC-EC orientation and PC-derived soluble factors on EC barrier function. We provide the first evidence that barrier-inducing properties of PCs require basolateral contact with ECs. Gene expression analysis (GEA) in ECs co-cultured with PCs versus ECs alone showed significant upregulation of 38 genes and downregulation of 122 genes. Pathway enrichment analysis of modulated genes showed significant regulation of several pathways, including transforming growth factor-β and interleukin-1 regulated extracellular matrix, interferon and interleukin signaling, immune system signaling, receptor of advanced glycation end products (RAGE), and cytokine–cytokine receptor interaction. Transcriptomic analysis showed a reduction in molecules such as pro-inflammatory cytokines and chemokines, which are known to be induced during BBB disruption. Moreover, cytokine proteome array confirmed the downregulation of key pro-inflammatory cytokines and chemokines on the protein level. Other molecules which influence BBB and were favorably modulated upon EC-PC co-culture include IL-18 binding protein, kallikrein-3, CSF2 CSF3, CXCL10, CXCL11 (downregulated) and IL-1-R4; HGF, PDGF-AB/BB, PECAM, SERPIN E1 (upregulated). In conclusion, we provide the first evidence that (1) basolateral contact between ECs and PCs is essential for EC barrier function and integrity; (2) in ECs co-cultured with PCs, the profile of BBB disrupting pro-inflammatory molecules and cytokines/chemokines is downregulated; (3) PCs significantly modulate EC mechanisms known to improve barrier function, including TGF-β regulated ECM pathway, anti-inflammatory cytokines, growth factors and matrix proteins. This human PC-EC co-culture may serve as a viable in vitro model for investigating BBB function and drug transport

    Cdk5 interacts with Hif-1α in neurons: A new hypoxic signalling mechanism?

    Full text link
    The cyclin dependent kinase 5 (Cdk5)/p35 complex is essential for regulation of cell survival during development and in models of neuronal excitotoxicity. Dysregulation of Cdk5, by cleavage of its neuronal specific activators p35 and p39, has been implicated in various neurodegenerative disorders such as Alzheimer's disease, however targets of the complex that regulate neuronal survival physiologically and/or during pathogenesis are largely unknown. Since hypoxia is a key feature in the pathogenesis of several neuronal disorders we investigated a role for Cdk5/p35 in the neuronal hypoxic response. Our data shows that hypoxia modulates the p35/Cdk5 complex in primary cortical neurons at the transcriptional and protein level. Furthermore hypoxic induction of Cdk5 activity correlates with Hif-1α stabilisation, and direct interaction between these proteins can occur. Importantly, we demonstrate that Cdk5-mediated signaling is involved in Hif-1α stabilisation since inhibition of Cdk5 by roscovitine abrogates Hif-1α accumulation and induces cell death. Taken together our results show that the Cdk5/p35 complex may significantly contribute to modulation of Hif-1α stabilisation and impact neuronal survival during oxygen deprivation. Thus this study highlights a new hypoxia-mediated signaling pathway and implicates the cytoskeleton as a potential regulator of Hif-1α. Section: Cellular and Molecular Biology of Nervous Systems

    Abstracts from the 20th International Symposium on Signal Transduction at the Blood-Brain Barriers

    Full text link
    https://deepblue.lib.umich.edu/bitstream/2027.42/138963/1/12987_2017_Article_71.pd

    Cell-specific interactions at the blood-brain barrier and their contribution to physiological and pathological brain homeostasis

    Full text link
    For many centuries man has been both captivated and perplexed by the brain and its workings. Whole body physiology is coordinated predominantly via complex and intricate brain processes that are only vaguely understood. As such the search continues to unravel what many individuals, scientists and lay men alike, consider the most important organ for our physiological function and indeed “humanness”. Within the brain there are many different cells that function continuously to coordinate body processes such as endothelial cells, astrocytes, pericytes, neurons, microglia and others. Although neurons are frequently considered to be the most important it must be remembered that crosstalk between all brain cell types is what enables the maintenance of a highly privileged environment that is permissive to support proper neuron function. Indeed what would be the point of leaving the kingdoms stash of gold unprotected? Surely such an oversight would result in a loss of the treasure and collapse of the empire. Since our ultimate goal is to protect the treasure (neurons) from the perpetrators of damage we must consider responses of not only the cells that are the master coordinators of body physiology (i.e neurons) but also the cells that protect them in our attempts to understand brain function and improve recovery after injury. At the heart of brain homeostasis is the blood-brain barrier (BBB) - the gateway to the brain parenchyma. The BBB is a microvascular network that exists throughout the brain and is composed of a vascular endothelium that has close and complex interactions predominantly with astrocytes and pericytes. In this regard it is paramount to know that disturbance of BBB function, especially via oxygen and/or ischemic conditions, allows entrance of foreign substances to the brain tissue and results in neuronal hyper-activation and dysfunction. The primary aim of my research presented herein is to convey to the reader the important contribution of different brain cells and their signaling mechanisms to physiological BBB development and stability, as well as its disruption during disease progression. The first chapter provides the reader with an introduction to the BBB and some of the major advances made during the last few decades. The following chapters present published work performed to understand the contribution of individual cell types to barrier stability and disturbance using classic and novel in vitro and in vivo systems. Evidence shows the differential impact of perivascular cells on endothelial characteristics via activation of different signaling mechanisms but also physical localization during both physiological and pathological conditions. Understanding the influence of HIF-1, the master regulator of hypoxic responses, on barrier function is also untaken and negative effects of sustained activation of the HIF-1 pathway on vascular stability in vivo using transgenic mice is also presented. The final chapters discuss the overall impact of these findings and highlights an agenda for further work and future obstacles that must be considered to be able to reach the goal of protecting and/or modulate barrier function effectively

    Astrocyte-specific hypoxia-inducible factor 1 (HIF-1) does not disrupt the endothelial barrier during hypoxia in vitro

    Full text link
    Background: Astrocytes (AC) are essential for brain homeostasis. Much data suggests that AC support and protect the vascular endothelium, but increasing evidence indicates that during injury conditions they may lose their supportive role resulting in endothelial cell activation and BBB disturbance. Understanding the triggers that flip this switch would provide invaluable information for designing new targets to modulate the brain vascular compartment. Hypoxia-inducible factor-1 (HIF-1) has long been assumed to be a culprit for barrier dysfunction as a number of its target genes are potent angiogenic factors. Indeed AC themselves, reservoirs of an array of different growth factors and molecules, are frequently assumed to be the source of such molecules although direct supporting evidence is yet to be published. Being well known reservoirs of HIF-1 dependent angiogenic molecules, we asked if AC HIF-1 dependent paracrine signaling drives brain EC disturbance during hypoxia. Methods: First we collected conditioned media from control and siRNA-mediated HIF-1 knockdown primary rat AC that had been exposed to normoxic or hypoxic conditions. The conditioned media was then used to culture normoxic and hypoxic (1% O2_{2}) rat brain microvascular EC (RBE4) for 6 and 24 h. Various activation parameters including migration, proliferation and cell cycling were assessed and compared to untreated controls. In addition, tight junction localization and barrier stability per se (via permeability assay) was evaluated. Results: AC conditioned media maintained both normoxic and hypoxic EC in a quiescent state by suppressing EC metabolic activity and proliferation. By FACs we observed reduced cell cycling with an increased number of cells in G0 phase and reduced cell numbers in M phase compared to controls. EC migration was also blocked by AC conditioned media and in correlation hypoxic tight junction organization and barrier functionality was improved. Surprisingly however, AC HIF-1 deletion did not impact EC responses or barrier stability during hypoxia. Conclusions: This study demonstrates that AC HIF-1 dependent paracrine signaling does not contribute to AC modulation of EC barrier function under normoxic or hypoxic conditions. Thus other cell types likely mediate EC permeability in stress scenarios. Our data does however highlight the continuous protective effect of AC on the barrier endothelium. Exploring these protective mechanisms in more detail will provide essential insight into ways to prevent barrier disturbance during injury and disease

    Transcryptomic analysis of human brain-microvascular endothelial response to -pericytes: cell orientation defines barrier function

    Full text link
    Pericytes facilitate blood–brain barrier (BBB) integrity; however, the mechanisms involved remain unclear. Hence, using co-cultures of human cerebral microvascular endothelial cells (ECs) and vascular pericytes (PCs) in different spatial arrangements, as well as PC conditioned media, we investigated the impact of PC-EC orientation and PC-derived soluble factors on EC barrier function. We provide the first evidence that barrier-inducing properties of PCs require basolateral contact with ECs. Gene expression analysis (GEA) in ECs co-cultured with PCs versus ECs alone showed significant upregulation of 38 genes and downregulation of 122 genes. Pathway enrichment analysis of modulated genes showed significant regulation of several pathways, including transforming growth factor-β and interleukin-1 regulated extracellular matrix, interferon and interleukin signaling, immune system signaling, receptor of advanced glycation end products (RAGE), and cytokine–cytokine receptor interaction. Transcriptomic analysis showed a reduction in molecules such as pro-inflammatory cytokines and chemokines, which are known to be induced during BBB disruption. Moreover, cytokine proteome array confirmed the downregulation of key pro-inflammatory cytokines and chemokines on the protein level. Other molecules which influence BBB and were favorably modulated upon EC-PC co-culture include IL-18 binding protein, kallikrein-3, CSF2 CSF3, CXCL10, CXCL11 (downregulated) and IL-1-R4; HGF, PDGF-AB/BB, PECAM, SERPIN E1 (upregulated). In conclusion, we provide the first evidence that (1) basolateral contact between ECs and PCs is essential for EC barrier function and integrity; (2) in ECs co-cultured with PCs, the profile of BBB disrupting pro-inflammatory molecules and cytokines/chemokines is downregulated; (3) PCs significantly modulate EC mechanisms known to improve barrier function, including TGF-β regulated ECM pathway, anti-inflammatory cytokines, growth factors and matrix proteins. This human PC-EC co-culture may serve as a viable in vitro model for investigating BBB function and drug transport
    corecore