10 research outputs found

    Molecular and life-history effects of a natural toxin on herbivorous and non-target soil arthropods

    Get PDF
    Natural toxins, such as isothiocyanate (ITC), are harmful secondary metabolites produced by plants. Many natural toxins occur in commercial crops, yet their possible negative repercussions on especially non-target soil organisms are largely unknown. This study examined life-history and gene transcriptional responses to 2-phenylethyl ITC on two soil arthropod species: Folsomia candida and Protaphorura fimata. To that end the standardized ISO guideline for ecotoxicological tests and a microarray for F. candida were used. The dissipation of 2-phenylethyl ITC in natural soil was investigated using GC-MS/MS for quantification. Half-lives, tested at four concentration levels in natural soil, were on average 16 h with biodegradation as the plausible main removal process. Regardless, toxic effects on reproduction were shown for F. candida and P. fimata, with EC50 values of around 11.5 nmol/g soil illustrating the toxic character of this compound. Gene expression profiles revealed the importance of fatty acid metabolism at low exposure concentrations (EC10), which is associated with the lipophilic nature of 2-phenylethyl ITC. At higher concentrations (EC50) gene expression became more ubiquitous with over-expression of especially stress-related genes and sugar metabolism. The regulation of a gene encoding a precursor of follistatin, furthermore, implied the inhibition of reproduction and may be an important molecular target that can be linked to the observed adverse effect of life-history traits

    Global quantification of contrasting leaf life span strategies for deciduous and evergreen species in response to environmental conditions

    No full text
    Aim: Species with deciduous and evergreen leaf habits typically differ in leaf life span (LLS). Yet quantification of the response of LLS, within each habit, to key environmental conditions is surprisingly lacking. The aim of this study is to quantify LLS strategies of the two leaf habits under varying temperature, moisture and nutrient conditions, using a global database. We hypothesize that deciduous LLS reflects the length of the growing season, avoiding unfavourable conditions regardless of the cause. Evergreen species adjust to unfavourable periods and amortize lower net carbon gains over several growing seasons, with increasing LLS associated with increasingly short favourable versus unfavourable season lengths. Location: Global. Methods: Data on LLS and environmental variables were compiled from global datasets for 189 deciduous and 506 evergreen species across 83 study locations. Individual and combined effects of measures of seasonality of temperature, water and nutrient availability on length of the growing season and on LLS were quantified using linear mixed models. The best models for predicting LLS were obtained using Akaike's information criterion (AIC) and ΔAIC. Results: The LLS of deciduous and evergreen species showed opposite responses to changes in environmental conditions. Under unfavourable conditions, deciduous LLS decreases while evergreen LLS increases. A measure of temperature alone was the best predictor of the growing season. The LLS of deciduous species was independent of environmental conditions after expressing LLS in relation to the number of growing seasons. Evergreen species, on the other hand, adjusted to unfavourable conditions by increasing LLS up to four growing seasons. Contrary to expectations, variation in LLS was best explained solely by temperature, instead of by combined measures of temperature, moisture and nutrient availability. Shifts in the photosynthesis to respiration balance might provide a physiological explanation. Main conclusions: Temperature, and not drought or nutrient availability, is the primary driver of contrasting responses of LLS for different leaf habit types

    Dissimilatory Sulfate- and Sulfur-Reducing Prokaryotes

    No full text
    corecore