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Abstract

Background: Chemical bioavailability is an important dose metric in environmental risk assessment. Although
many approaches have been used to evaluate bioavailability, not a single approach is free from limitations.
Previously, we developed a new genomics-based approach that integrated microarray technology and regression
modeling for predicting bioavailability (tissue residue) of explosives compounds in exposed earthworms. In the
present study, we further compared 18 different regression models and performed variable selection simultaneously
with parameter estimation.

Results: This refined approach was applied to both previously collected and newly acquired earthworm microarray
gene expression datasets for three explosive compounds. Our results demonstrate that a prediction accuracy of
R2 = 0.71–0.82 was achievable at a relatively low model complexity with as few as 3–10 predictor genes per model.
These results are much more encouraging than our previous ones.

Conclusion: This study has demonstrated that our approach is promising for bioavailability measurement, which
warrants further studies of mixed contamination scenarios in field settings

Keywords: Tissue residue, Global gene expression profiling, Predictor genes, Predictive regression modeling, TNT
(2,4,6-Trinitrotoluene), RDX (1,3,5-Trinitro-1,3,5-triazacyclohexane), HMX (Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine),
Earthworm (Eisenia fetida)

Background
Bioavailability processes were defined in a 2003 National
Research Council (NRC) report [1] as the individual
physical, chemical, and biological interactions that deter-
mine the exposure of plants and animals to chemicals
associated with soils and sediments. In environmental
risk assessment, the amount of chemicals taken up by an
animal or plant is termed dose, or, interchangeably tissue
residue, body burden or chemical bioavailability. A dis-
tinction exists between dose and exposure as the latter is
defined as the amount of chemicals present in the

immediate environment where the organism is exposed
to. Soils are a major sink for many environmental contam-
inants including explosives compounds. Soil contamin-
ation by military unique compounds is a serious
environmental concern that can result in the formation of
chemical residues in tissue of exposed organisms [2]. Since
many site-specific biotic and abiotic factors can modify
the form, mobility and availability of these contaminants,
the actual exposure risk to ecological receptors may be
less than that suggested by their total concentration.
Therefore, the extent to which chemicals are bio-available
has significant implications for risk management and re-
medial decision-making at contaminated sites.
A myriad of biological, physical and chemical ap-

proaches have been used to evaluate bioavailability of
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chemicals [3]. For instance, biological approaches include
techniques measuring organismal uptake (body burden or
bioaccumulation), response, and toxicity. Tissue residues
or body burden of chemicals, often determined using ana-
lytical chemistry methods, can represent the bio-available
or biologically effective concentration at the target site.
However, little consensus exists about optimal approaches
for measuring bioavailability. As summarized in the afore-
mentioned NRC report [1] and a recent review [3], no sin-
gle tool is free from limitations and none can be applied
universally. An intensive effort to develop mechanistic
tools or models based on mechanisms is critical to future
development of bioavailability tools [1, 3].
Recent advances have prompted the application of

genomics-based technologies to ecological risk assess-
ment, including screening, tiered testing, monitoring, re-
mediation, and regulatory decision-making (see [4, 5] for
details). Toxicogenomics has been extensively applied to
assess toxicological effects, especially in biomarker dis-
covery and toxicity mechanistic investigations. On the
other hand, toxicogenomics also possesses a great poten-
tial for providing a quantitative measure of chemical ex-
posure. Nevertheless, the application of toxicogenomics to
exposure assessment has been relatively under-explored.
Previously, we applied microarray technology to profile
gene expression in earthworms exposed to explosives
2,4,6-trinitrotoluene (TNT, CAS Number 118-96-7) or
1,3,5-trinitro-1,3,5-triazacyclohexane (RDX, CAS Number
121-82-4) for 4 or 14 days, and built multivariate regres-
sion models to quantitatively predict earthworm tissue
residue of these two compounds [2]. The models, how-
ever, showed only a modest predictive power, explaining
close to half of the variance for TNT tissue residue and
one-quarter of the variance for RDX tissue residue.
The present study was motivated to improve the quan-

titative predictive power of regression modeling based
on genome-wide gene expression data. Our hypothesis
was that small sets of predictor genes could be identified
and used to build multivariate regression models for
quantitative prediction of tissue residue levels of explo-
sives compounds. Consistent with our previous study, the
overall goal of this study was to investigate the feasibility
of using gene expression data to assess animal exposure.
To achieve this goal, we re-analyzed the previous datasets
by separating the 4-day exposure from the 14-day expos-
ure, and expanding from two regression methods to 18
methods. In addition, we have also generated a new data-
set from HMX-exposed earthworms (HMX: octahydro-
1,3,5,7-tetranitro-1,3,5,7-tetrazocine, CAS Number 2691-
41-0) and applied the same approach to analyzing it. Our
results demonstrated that much higher prediction accur-
acies were attained indicating that microarray gene ex-
pression coupled with multivariate regression modeling is
a viable approach for assessing chemical bioavailability.

Methods
The overall experimental approach is depicted in Fig. 1.
We first exposed earthworms to explosives compounds
and measured tissue residues (y) and gene expression
profiles in both exposed earthworms and unexposed
controls. Then we identified small sets of predictor
genes (x) to build regression models (y’ = f(x,β), where y’
is the predicted residue and β is a coefficient vector.
These models were applied to predict the bioavailability
(tissue residues) in exposed worms using only predictor
gene expression data. Finally, the actual measured tissue
residues (y) were compared with the predicted values (y’)
to determine prediction accuracy evaluated by correl-
ation coefficients (R2). Our ultimate goal was to apply
these prediction models to estimate the unknown bio-
availability in worms from their gene expression data (as
indicated by the purple double-headed arrow).

Experimental design
Previously, we collected a large 248-sample dataset with
measurements of transcriptome-wide gene expression
[6] and tissue residue of two explosives chemicals, [U-
14C]-labeled TNT and RDX, in the earthworm Eisenia
fetida (see details in [2]). Briefly, three sets of experi-
ments were conducted by exposing mature adult worms
bearing a clear clitellum in a pristine sandy loam soil
amended with TNT or RDX. Nominal exposure concen-
trations were as follows: 0, 6, 12, 24, 48, 96 mg [U-14C]
TNT/kg, or 8, 16, 32, 64, 128 mg [U-14C] RDX/kg for
4 days (the 1st set) or 14 days (the 3rd set). The 4-day
exposure was repeated (the 2nd set) with the same TNT
concentrations but different RDX concentrations (2, 4, 8,
16 and 32 mg/kg).
Following the same experimental design, we exposed

adult worms to [U-14C]-labeled HMX for 4, 14 and
28 days at nominal concentrations of 0 (blank control
and solvent control), 8, 16, 32, 64 and 128 mg/kg in the
same silt loam soil as in our previous study [6]. [U-
14C]HMX was purchased from DuPont NEN (Boston,
MA) with an initial specific activity of 86.4 mCi/mmol.
Earthworms were reared in-house in a continuous lab
culture as previously described [7]. Ten worms were ex-
posed in 250 g (dry weight) of soil per each treatment.
The nominal soil concentrations were verified to possess
less than 10 % variations from target concentrations
using a High Performance Liquid Chromatography
equipped with a Radioactivity Flow Detector (HPLC-
RFD) [2]. Upon termination, all worms were flash-frozen
in liquid nitrogen, stored at−80 °C, lyophilized at −40 °C,
and homogenized.

Tissue residue analysis for HMX
All ten worms per treatment were analyzed for tissue
residue. For tissue HMX-residue analysis, triplicate
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subsamples (10–15 mg each) were digested in 1 mL of
0.6 N ScintiGest Tissue Solubilizer (Fisher Scientific) for
18 h [8]. Radioactivity was determined by adding 200 μl
of tissue digest to Ultima Gold scintillation cocktail (Per-
kin-Elmer, Waltham, MA) using a Packard TriCarb
2500TR Liquid Scintillation Counter (Meriden, CT).
Prior to the analysis, we validated this method (see more
details in [8]) by comparing it with our previously used
methods. Testing results showed that the solubilization
method yielded 92 % ± 3 % (mean ± standard error, n =
19) of the radioactivity measured previously by using
oxidization methods for the same TNT- or RDX-
exposed worms [2].

Gene expression profiling for HMX-exposed worms
Total RNA was extracted from five of the ten worms per
treatment using an RNeasy mini kit (Qiagen, Valencia,
CA). Each RNA sample was hybridized to the custom-
designed Agilent 15 K E. fetida oligo array (AMA-
DID#021219; Santa Clara, CA) previously used for gen-
erating the TNT and RDX microarray datasets [6]. This

array contained 15208 unique transcript-targeted 60-mer
oligo probes (8 arrays per slide). Details of array
hybridization, gene expression data acquisition and pre-
processing were described elsewhere [2, 6].

Identification of differentially expressed (DE) genes
DE genes were identified for all three datasets (TNT,
RDX and HMX) among multiple concentrations using a
multivariate permutation random-variance t-test (two-
class) or F-test (multiple-class) implemented in BRB-
ArrayTools version 4.2.1 [9, 10]. A gene was considered
statistically significant if it achieved 80 % confidence that
the false discovery rate (FDR) was less than 10 %. DE
genes were derived for individual exposure duration and
explosives compound separately.

Regression prediction modeling
For residue prediction, we chose 18 different multivari-
ate regression models and employed double-looped, 10-
fold cross-validation as described in Statnikov et al. [11]
to assess prediction accuracy. The inner loop was used

Fig. 1 The overall experimental approach. See the Methods section for explanation
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to determine the optimal value of parameters (in a
cross-validated fashion) for training in the outer loop.
Model performance (prediction accuracy) was estimated
in the outer loop by training on all splits but one, and
using the remaining one for testing. Coefficient of deter-
mination (R2) was calculated using Pearson’s formula to
describe prediction accuracy or “goodness of fit”, i.e.,
how well the tissue residue predicted by a regression
model represented the actually measured residue of
a worm tissue sample. The 18 models include six
linear models (Multivariate, Robust, Ridge, LASSO
regularization, Elastic net regularization, and Support
Vector Regression (SVR)) and 12 nonlinear models
(Stepwise, Ridge Polynomial, Ridge Exponential, Ridge
Gaussian kernel, SVR Polynomial, SVR Gaussian kernel,
SVR Sigmoid kernel, Nadaraya-Watson kernel, Inverse
regression, Loglog, Regression tree, and Random Forest)
(see Additional file 1 for model description and refer-
ences). Matlab codes were scripted to implement array
data preprocessing, regression, and cross-validation, and
are available upon request.

Results
Selection of predictor genes from TNT and RDX gene
expression datasets
We reanalyzed the TNT and RDX microarray datasets by
separating the 4-day sample set from the 14-day sample
set. Differentially expressed (DE) genes were identified
among different treatments (classes) of 4-day or 14-day
earthworm samples using a multivariate permutation test
[9]. Statistical reanalysis of the 14-day exposure gene ex-
pression data resulted in six and three DE genes for TNT
and RDX, respectively (Additional file 2 and Additional
file 3). For the 4-day TNT exposure, 1758, 886 and 4985
genes were inferred as DE genes from the original expos-
ure (containing six classes), the repeat exposure (four clas-
ses) and the original vs. repeat controls (two classes),
respectively (Additional file 2). A group of 118 DE genes
were found to be common between the original and the
repeat TNT exposures. This group was further reduced to
53 genes after excluding genes also found to be signifi-
cantly altered between the original and the repeat controls
(see worksheet “OriginalD4” in Additional file 2). Simi-
larly, 488 and 2682 DE genes were derived from the ori-
ginal RDX and the repeat RDX exposures (six classes
each), respectively, with 178 genes in common (Additional
file 3). Twenty-six genes out of the 178-gene group
remained after excluding the same DE genes appear-
ing in the controls comparison (TNT and RDX expo-
sures shared the control treatments; see worksheet
“RepeatD4” in Additional file 3).
The final sets of identified DE genes are shown in

Additional file 2 and Additional file 3. The low numbers
of DE genes found in 14-day exposures are consistent with

our previous report [6]. We obtained more DE genes than
previously for the 4-day exposures because of the reduced
statistics stringency (80 % confidence level and 10 % FDR
vs. 99 % confidence level and ten false positive genes [6]).
However, worms used in the original and the repeat expo-
sures exhibited significant differences that were
reflected as nearly 1/3 of all 15 K profiled genes differ-
entially expressed between the two control groups (see
worksheet “D4controls” in Additional file 2 and
Additional file 3). Therefore, we chose to remove these
genes not responding specifically to 4-day TNT or
RDX exposure from the final DE gene lists (see work-
sheet “D4_finalDEgenes-expression” in Additional file
2 and Additional file 3).

Regression predictive modeling for TNT and RDX tissue
residue
Using the aforesaid final sets of DE genes as predictor
genes, the 18 regression methods displayed varied power
in predicting worm tissue residues of TNT and RDX
(Table 1). The predictive power was assessed using the
coefficient of determination (R2) as a measure of the ac-
curacy of the data model. No single method was placed
as the best performer for all four datasets. For instance,
the multivariate linear regression model was the best
performer for the 14-day TNT exposure dataset, but its
performance was relatively weak on the 4-day TNT ex-
posure dataset. Quite a few models such as LASSO,
Elastic net, the Ridge family models, the SVR family
models except for SVR Sigmoid, and Nadaraya-Watson
performed consistently well across all four datasets. In
contrast, some models like SVR Sigmoid, Loglog, and re-
verse regression performed poorly or even appeared in-
applicable to the datasets.
The predictive power of the best performers was re-

markably improved in comparison to our previously
published results [2]. On average, these models ex-
plained 75 % (TNT) or 66 % (RDX) variance of the 4-
day samples, and 72 % (TNT) or 71 % (RDX) variance of
the 14-day samples (Fig. 2). In our previous study, the
best prediction models explained roughly one-quarter
and less than one-half of the variance for RDX and
TNT, respectively [2].

Tissue residue in HMX-exposed earthworms
The measured tissue residue of radio-labeled HMX
increased with the increasing nominal amendment
concentration and also with the duration of exposure
(Fig. 3 and Additional file 4 worksheet “Residue”).
Trace amounts of HMX were detected in some of
the two control groups, which are equivalent to the
background noise level or the lower detection limit
of the analytical method. The worm tissue residue
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did not appear to plateau at the highest amendment
level, suggesting that more HMX could be taken up
from soil by the earthworm, given a higher amend-
ment concentration.

Predictor genes selection for HMX gene expression
dataset
The HMX microarray gene expression dataset consists
of three exposure groups (4-, 14- and 28-day) of 40 ar-
rays, i.e., 8 treatments (including T = 0 sampling, solvent
control, blank control, and five HMX concentrations) ×
5 replicates. The two control groups in all three expo-
sures showed no significant difference because no DE
gene was identifiable at the same settings as above. So,
the two groups were combined as one control group for
subsequent statistical analyses. The three Day 0 sam-
plings (3-class comparison) exhibited little difference
with only seven derived DE genes, suggesting that
worms used in all three exposures were nearly identical
and that animal batches had a minimal impact on the
test results (see worksheet “T0” in Additional file 4).
Only 2, 2, and six genes were inferred as DE genes for
the 4-, 14-, and 28-day exposures, respectively (see

worksheets “4D”, “14D” and “28D” in Additional file 4,
respectively). There was no overlap among all four sets
of inferred DE genes (Day 0, 4, 14 and 28, see worksheet
“Predictor genes” in Additional file 4). Using DE genes
as predictors, regression modeling resulted in a modest
predictive power for the 4-day (two genes) and 14-day
(two genes) exposures with the best performer only
explaining an average of 55 % variance (see worksheet
“Performance” in Additional file 4). Performance of the
6 predictor genes on the 28-day dataset was much better
with the highest R2 of 0.75. All these preliminary results
are provided in Additional file 4.
In order to improve the predictive power, a different

approach was used to identify additional predictor genes.
We ran a correlation test to determine the degree of de-
pendence between each expressed gene and the tissue
residue. Then, all 15 K genes were ranked according to
their coefficients of correlation (r). With a cutoff of |r| =
0.6, we obtained 21, 12 and 29 most correlated genes for
the 4-d, 14-d and 28-d exposures, respectively, which
were considered potential predictor genes (see work-
sheet “Predictor genes” in Additional file 4). Genes at
the top of the most correlated genes lists were most

Table 1 Performance of 18 regression modeling methods on four datasets assessed by coefficient of determination (R2, mean ±
standard deviation, n = 10) estimated from ten runs of 10-fold cross-validation with values of the best performing method for each
dataset shown in bold

Regression method RDX_D4 RDX_D14 TNT_D4 TNT_D14

Predictor size (gene #) 26 3 53 6

Linear

Multivariate 0.62 ± 0.19 0.65 ± 0.12 0.42 ± 0.14 0.72 ± 0.18

Robust 0.63 ± 0.14 0.65 ± 0.13 NA 0.67 ± 0.15

Ridge 0.65 ± 0.15 0.65 ± 0.13 0.73 ± 0.15 0.71 ± 0.16

LASSO 0.65 ± 0.18 0.65 ± 0.14 0.73 ± 0.15 0.69 ± 0.15

Elastic net 0.66 ± 0.20 0.66 ± 0.13 0.75 ± 0.19 0.69 ± 0.17

SVR 0.60 ± 0.15 0.68 ± 0.14 0.74 ± 0.16 0.66 ± 0.16

Nonlinear

Stepwise 0.42 ± 0.21 0.69 ± 0.14 0.33 ± 0.21 0.6 ± 0.16

Ridge Polynomial 0.62 ± 0.18 0.71 ± 0.12 0.71 ± 0.14 0.66 ± 0.16

Ridge Exponential 0.65 ± 0.13 0.67 ± 0.13 0.68 ± 0.14 0.67 ± 0.17

Ridge Gaussian 0.64 ± 0.14 0.70 ± 0.15 0.43 ± 0.13 0.64 ± 0.16

SVR Polynomial 0.61 ± 0.15 0.68 ± 0.14 0.70 ± 0.12 0.63 ± 0.16

SVR Gaussian 0.63 ± 0.13 0.68 ± 0.14 0.74 ± 0.12 0.67 ± 0.13

SVR Sigmoid 0.17 ± 0.00 NA 0.08 ± 0.00 NA

Nadaraya-Watson 0.54 ± 0.09 0.68 ± 0.16 0.73 ± 0.17 0.67 ± 0.13

Inverse 0.44 ± 0.14 NA 0.31 ± 0.10 NA

Loglog NA NA NA NA

Regression Tree 0.53 ± 0.10 0.59 ± 0.13 0.73 ± 0.12 0.54 ± 0.14

Random Forest 0.60 ± 0.12 0.59 ± 0.16 0.75 ± 0.10 0.70 ± 0.17

RDX_D4 4-day RDX exposure, RDX_D14 14-day RDX exposure, TNT_D4 4-day TNT exposure, TNT_D14 14-day TNT exposure, NA not available. See Additional file 5
for the lists and annotation of predictor genes
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Fig. 2 The average predicted versus the measured tissue residues of TNT or RDX in all 4-day or 14-day exposed samples using their respective
best performing models

Fig. 3 Tissue residue of radio-labeled HMX measured in earthworms exposed for 4-, 14-, and 28-days (see Supplementary file 3 for raw data). Data
are represented as mean (column) + standard deviation (error bar) with n = 10. BC = blank control; SC = solvent control
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positively correlated with tissue residue, while those at
the bottom most negatively correlated with tissue resi-
due. Some of the genes on these lists were also DE
genes. We conducted performance analyses of the incre-
mental new sets of predictor genes by adding two or
three genes from the top or the bottom of the most cor-
related genes list at a time to the DE genes to form a
new predictor gene set. Results (not shown) indicate that
addition of the top two and the bottom two had an opti-
mal enhancement in prediction accuracy. Therefore, the
final revised sets of predictor genes consisted of DE
genes, the top two and the bottom two genes on the
most correlated genes lists.

Prediction outcome for HMX gene expression dataset
Using the revised sets of predictor genes (see worksheet
“Predictor genes” in Additional file 4), the regression
models achieved substantial enhancement in prediction
accuracy (Table 2 and worksheet “Performance” in
Additional file 4). Particularly, prediction outcomes for

the 4- and 14-day exposures improved by nearly 20 % as
the best performers for the two datasets both explained
72–73 % of the variance (Fig. 4). The 28-day dataset did
not improve as much (7 % increase) largely because five
out of the six DE genes (|r| > 0.6) were among the most
correlated genes list with one (TA1-161768) being the
most negatively correlated gene (r = −0.738) and another
(TA2-167546) the third most positively correlated gene
(r = 0.674) (worksheet “Predictor genes” in Additional
file 4). In contrast, none of the four DE genes derived
from the 4- and 14-day datasets were on the most corre-
lated genes lists. Models that performed well on the
TNT and RDX datasets also did consistently well on the
HMX datasets. Three models, SVR Sigmoid, inverse re-
gression and loglog regression, were not suitable for all
datasets (Tables 1 and 2), probably because of trans-
formation and normalization operations in data pre-
processing.

Discussion
Quantitative prediction of a phenotype or trait using
high dimensional gene expression data has been long ex-
plored in many research fields such as human diseases
[12, 13], animal breeding [14] and plant genetics [14,
15]. The phenotypes of prediction interest are broad and
have included thrombocytosis etiologies [16], acute mye-
loid leukemia resistance [17] and breast cancer tumor
response [18] to chemotherapy in biomedical research,
cattle milk yield in animal breeding [14], and wheat
grain yield [14] and plant pathogen infection severity
[15] in plant genetics. The methodology of predictive
modeling varies widely from Bayesian network-based ap-
proaches [19] to Bayesian hierarchical regression model-
ing [15] and ordinary multivariate regression [18]. The
reported prediction accuracy also varies from one study
to another, implying significant challenges and oppor-
tunities co-existing in this field [13].
Similar to the aforementioned fields of research, we

have also sought to use transcriptomic data coupled with
regression modeling to predict a phenotype, i.e., chem-
ical residues in animals [2, 20]. Although prediction ac-
curacies were unsatisfactory in our previous study, we
have significantly improved them in the present study
without adding to the complexity of regression models.
The size of predictor gene sets has been reduced to
three to ten genes for all datasets except the 4-day
TNT and RDX exposures (Tables 1 and 2), which are
likely the lowest number of predictors possible [16,
18], given the complicated processes involved in resi-
due formation. Although there is still room for fur-
ther improvement, the accuracies obtained here are
comparable to those reported in other quantitative
trait prediction studies [14–19].

Table 2 Performance of 18 regression modeling methods on
the three HMX exposure datasets assessed by coefficient of
determination (R2, mean ± standard deviation, n = 10) estimated
from ten runs of 10-fold cross-validation with values of the best
performing method shown in bold

Regression method D4 D14 D28

Predictor size (gene #) 6 6 10

Linear

Multivariate 0.53 ± 0.15 0.52 ± 0.15 0.58 ± 0.15

Robust 0.66 ± 0.12 0.72 ± 0.09 0.79 ± 0.02

Ridge 0.67 ± 0.10 0.70 ± 0.11 0.81 ± 0.02

LASSO 0.69 ± 0.10 0.72 ± 0.10 0.81 ± 0.04

Elastic net 0.72 ± 0.09 0.71 ± 0.11 0.82 ± 0.03

SVR 0.70 ± 0.10 0.65 ± 0.09 0.81 ± 0.05

Nonlinear

Stepwise 0.67 ± 0.07 0.66 ± 0.11 0.79 ± 0.05

Ridge Polynomial 0.63 ± 0.11 0.73 ± 0.08 0.76 ± 0.05

Ridge Exponential 0.68 ± 0.08 0.68 ± 0.09 0.79 ± 0.04

Ridge Gaussian 0.51 ± 0.16 0.56 ± 0.14 0.66 ± 0.06

SVR Polynomial 0.69 ± 0.11 0.64 ± 0.11 0.79 ± 0.06

SVR Gaussian 0.65 ± 0.09 0.60 ± 0.10 0.73 ± 0.10

SVR Sigmoid 0.48 ± 0.15 0.49 ± 0.15 0.68 ± 0.12

Nadaraya-Watson 0.68 ± 0.09 0.67 ± 0.09 0.80 ± 0.04

Inverse NA NA NA

Loglog NA NA NA

Regression Tree 0.56 ± 0.15 0.61 ± 0.14 0.65 ± 0.13

Random Forest 0.55 ± 0.16 0.60 ± 0.13 0.69 ± 0.10

D4 4-day HMX exposure, D14 14-day HMX exposure, D28 28-day HMX exposure,
NA not available. See Additional file 5 for the lists and annotation of predictor
genes
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It has been reported that variable or feature selection
is a key step towards accurate prediction [2, 15]. To se-
lect features (genes) that have high predictive power as
predictors, many different strategies have been devel-
oped, including t- or F-test based approaches to identify
differentially expressed genes (e.g., [17]), correlation
based methods to rank genes (e.g., [18]), machine learn-
ing based techniques (e.g., [21, 22]), and some combina-
tions of the three types of strategies (e.g., [2, 6, 15]). In
the present study, we have used both F-test and correl-
ation based approaches to select for subsets of predictor
genes. A variety of regression models were applied to de-
scribe relationships between the response variable (i.e.,
tissue residue) and a set of predictors through a regres-
sion function involving some parameter(s) to be esti-
mated from data [13]. Given the time-dependent nature
of tissue residue (response variable) and gene expression
levels (predictors) [20], the datasets were split by expos-
ure duration. Results indicate that this step remarkably
improved the prediction outcome for both TNT and
RDX exposures. To be used as predictors, altered levels
of a given transcript need not be connected to a specific
biologic end point, nor do the specific functions of all
the mRNA molecules have to be known, although such
information would be valuable [20]. Bioinformatic anno-
tation of all 110 selected earthworm predictor genes
using Blast2GO [23] shows that only 47 of them (43 %)
have meaningful biological functions and that their con-
tribution to residue formation remain largely unknown
(Additional file 5).
Recently, there has been an intense interest in per-

forming variable selection simultaneously with param-
eter estimation in predictive modeling. Frequently
applied approaches include Bayesian methods (e.g.,
Gibbs Variable Selection (GVS), Stochastic Search Vari-
able Selection (SSVS), adaptive shrinkage with Jeffreys’
prior or a Laplacian prior, and reversible jump Markov
Chain Monte Carlo (MCMC)) [24] and LASSO, Ridge
or Elastic net regularization methods [25, 26]. Given
such a large variety, there is no consensus with regard to

what method is the universally best performer. For in-
stance, O’Hara and Sillanpaa [24] tested several Bayesian
variable selection methods on both simulated and ex-
perimentally collected data and concluded that SSVS, re-
versible jump MCMC and adaptive shrinkage methods
all worked well, but the choice of which method was
better depended on the priors that were used, and also
on how they were implemented. Similarly, Fu et al. [22]
concluded that SVR, partial least squares regression and
multiple linear regression yielded higher prediction ac-
curacies for one dataset but transcriptome-based dis-
tances worked better on another dataset. In the present
study, we also observed that LASSO, Ridge and Elastic
net regularization methods performed almost equally
well on all datasets, whereas inverse and loglog regres-
sion methods performed poorly on the datasets in a con-
sistent fashion.
It is worth noting that the approach employed in this

study faces several challenges when applied to residue
prediction. First, compared with other existing ap-
proaches, it requires a more extensive effort to identify
and optimize a set of predictor genes. Second, if the spe-
cies of interest does not have a transcriptome-wide
microarray available, one has to either design the micro-
array from scratch or use the array of a closely related
species (e.g., using E. fetida-specific array for E. andrei
[27]), which may limit its applicability. Third, as a novel
approach, there is no doubt that it is still in its embry-
onic phase and that its full potential and limitations are
not yet explored thoroughly. For instance, our ap-
proach may be applied to quantitative predictions in
drug discovery such as predictive ranking of new drug
toxicity and/or potency as they share similarities in
high data dimensionality and transcriptomic profiling
based on either microarray- or RNA-Seq/next-gener-
ation sequencing-based data.

Conclusions
Chemical residue in exposed animals is an important
dose metric in environmental risk assessment. The

Fig. 4 Prediction results of 4-, 14- and 28-day HMX-exposed earthworm tissue residues using the best performing models (shown are the results
of a single run of 10-fold cross-validation)
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formation of tissue residue involves a number of com-
plex biological processes which can be reflected as ex-
pression profiles in microarray experiments. Building
predictive models of tissue residue based on gene ex-
pression would help to accurately assess how much
chemical an animal has been exposed to thereby enab-
ling assessment of bio-available toxicant levels in the
environment. It is our belief that the microarray technol-
ogy coupled with regression modeling provides an in-
novative and promising tool towards this direction. The
natural next steps are to demonstrate the applicability
and prediction power of this new approach in scenarios
of contaminants mixtures and also at field contaminated
military sites. Ultimately, information collected from
such studies will be used to support further development
of predictive modeling for toxicogenomic measures of
exposure [20].

Availability of supporting data
The microarray datasets were deposited in the National
Center for Biotechnology Information (NCBI)’s Gene Ex-
pression Omnibus (GEO) database as series GSE42866
(HMX dataset; http://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE42866) and GSE18495 (TNT and RDX
datasets; http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE18495). The custom-designed earthworm (Eise-
nia fetida) microarray with 15 K oligo probes is accessible
as GEO platform GPL9420.
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