22 research outputs found

    Gender-Related Impact of Sclerostin Antibody on Bone in the Osteogenesis Imperfecta Mouse

    Get PDF
    Osteogenesis imperfecta (OI), which is most often due to a collagen type 1 gene mutation, is characterized by low bone density and bone fragility. In OI patients, gender-related differences were reported, but data in the literature are not convergent. We previously observed that sclerostin antibody (Scl-Ab), which stimulates osteoblast Wnt pathway via sclerostin inactivation, improved spine and long-bone parameters and biomechanical strength in female oim/oim mice, a validated model of human type 3 OI. Here, we wanted to highlight the effect of Scl-Ab on male oim/oim bones in order to identify a possible distinct therapeutic effect from that observed in females. According to the same protocol as our previous study with female mice, male wild-type (Wt) and oim/oim mice received vehicle or Scl-Ab from 5 to 14 weeks of age. Clinimetric and quantitative bone parameters were studied using X-rays, peripheral quantitative computed tomography, microradiography, and dynamic histomorphometry and compared to those of females. Contrary to Wt mice, male oim/oim had significantly lower weight, snout–sacrum length, and bone mineral content than females at 5 weeks. No significant difference in these clinimetric parameters was observed at 14 weeks, whereas male oim showed significantly more long-bone fractures than females. Scl-Ab improved bone mineral density and bone volume/total volume ratio (BV/TV) of vertebral body in Wt and oim/oim, without significant difference between male and female at 14 weeks. Male vehicle oim/oim had a significantly lower cortical thickness (Ct.Th) and BV/TV of tibial diaphysis than female and showed a higher number of fractures at 14 weeks. Scl-Ab increased midshaft periosteal apposition rate in such a way that tibial Ct.Th of male oim/oim was not significantly different from the female one at 14 weeks. The number of fractures was lower in male than female oim/oim after 14 weeks of Scl-Ab treatment, but this difference was not significant. Nevertheless, Scl-Ab–treated oim/oim male and female mice remained smaller than the Wt ones. In conclusion, our results highlighted differences between male and female oim/oim at 4 and 14 weeks of age, as well as some male-specific response of cortical bone to Scl-Ab. These gender-related particularities of oim/oim should be considered when testing experimental treatments

    Sclerostin antibody reduces long bone fractures in the oim/oim model of osteogenesis imperfecta

    Get PDF
    Osteogenesis imperfecta type III (OI) is a serious genetic condition with poor bone quality and a high fracture rate in children. In a previous study, it was shown that a monoclonal antibody neutralizing sclerostin (Scl-Ab) increases strength and vertebral bone mass while reducing the number of axial fractures in oim/oim, a mouse model of OI type III. Here, we analyze the impact of Scl-Ab on long bones in OI mice. After 9 weeks of treatment, Scl-Ab significantly reduced long bone fractures (3.6 ± 0.3 versus 2.1 ± 0.8 per mouse, p < 0.001). In addition, the cortical thickness of the tibial midshaft was increased (+42%, p < 0.001), as well as BMD (+28%, p < 0.001), ultimate load (+86%, p < 0.05), plastic energy (+184%; p < 0.05) and stiffness (+172%; p < 0.01) in OI Scl-Ab mice compared to OI vehicle controls. Similar effects of Scl-Ab were observed in Wild type (Wt) mice. The plastic energy, which reflects the fragility of the tissue, was lower in the OI than in the Wt and significantly improved with the Scl-Ab treatment. At the tissue level by nanoindentation, Scl-Ab slightly increased the elastic modulus in bones of both OI and Wt, while moderately increasing tissue hardness (+13% compared to the vehicle; p < 0.05) in Wt bones, but not in OI bones. Although it did not change the properties of the OI bone matrix material, Scl-Ab reduced the fracture rate of the long bones by improving its bone mass, density, geometry, and biomechanical strength. These results suggest that Scl-Ab can reduce long-bone fractures in patients with OI

    Sclerostin-Antibody Treatment Decreases Fracture Rates in Axial Skeleton and Improves the Skeletal Phenotype in Growing oim/oim Mice

    No full text
    In osteogenesis imperfecta (OI), vertebrae brittleness causes thorax deformations and leads to cardiopulmonary failure. As sclerostin-neutralizing antibodies increase bone mass and strength in animal models of osteoporosis, their administration in two murine models of severe OI enhanced the strength of vertebrae in growing female Crtap−/− mice but not in growing male Col1a1Jrt/+ mice. However, these two studies ignored the impact of antibodies on spine growth, fracture rates, and compressive mechanical properties. Here, we conducted a randomized controlled trial in oim/oim mice, an established model of human severe OI type III due to a mutation in Col1a2. Five-week-old female WT and oim/oim mice received either PBS or sclerostin antibody (Scl-Ab) for 9 weeks. Analyses included radiography, histomorphometry, pQCT, microcomputed tomography, and biomechanical testing. Though it did not modify vertebral axial growth, Scl-Ab treatment markedly reduced the fracture prevalence in the pelvis and caudal vertebrae, enhanced osteoblast activity (L4), increased cervico-sacral spine BMD, and improved the lumbosacral spine bone cross-sectional area. Scl-Ab did not impact vertebral height and body size but enhanced the cortical thickness and trabecular bone volume significantly in the two Scl-Ab groups. At lumbar vertebrae and tibial metaphysis, the absolute increase in cortical and trabecular bone mass was higher in Scl-Ab WT than in Scl-Ab oim/oim. The effects on trabecular bone mass were mainly due to changes in trabecular number at vertebrae and in trabecular thickness at metaphyses. Additionally, Scl-Ab did not restore a standard trabecular network, but improved bone compressive ultimate load with more robust effects at vertebrae than at metaphysis. Overall, Scl-Ab treatment may be beneficial for reducing vertebral fractures and spine deformities in patients with severe OI

    Dickkopf-1 is a master regulator of joint remodeling

    No full text
    Degenerative and inflammatory joint diseases lead to a destruction of the joint architecture. Whereas degenerative osteoarthritis results in the formation of new bone, rheumatoid arthritis leads to bone resorption. The molecular basis of these different patterns of joint disease is unknown. By inhibiting Dickkopf-1 (DKK-1), a regulatory molecule of the Wnt pathway, we were able to reverse the bone-destructive pattern of a mouse model of rheumatoid arthritis to the bone-forming pattern of osteoarthritis. In this way, no overall bone erosion resulted, although bony nodules, so-called osteophytes, did form. We identified tumor necrosis factor-alpha (TNF) as a key inducer of DKK-1 in the mouse inflammatory arthritis model and in human rheumatoid arthritis. These results suggest that the Wnt pathway is a key regulator of joint remodelin
    corecore