453 research outputs found

    Effects of 24 months of treatment with romosozumab followed by 12 months of denosumab or placebo in postmenopausal women with low bone mineral density : a randomized, double-blind, phase 2, parallel group study

    Get PDF
    Over 12 months, romosozumab increased bone formation and decreased bone resorption, resulting in increased bone mineral density (BMD) in postmenopausal women with low BMD (NCT00896532). Herein, we report the study extension evaluating 24 months of treatment with romosozumab, discontinuation of romosozumab, alendronate followed by romosozumab, and romosozumab followed by denosumab. Postmenopausal women aged 55 to 85 years with a lumbar spine (LS), total hip (TH), or femoral neck T-score =-3.5 were enrolled and randomly assigned to placebo, one of five romosozumab regimens (70 mg, 140 mg, 210 mg monthly [QM]; 140 mg Q3M; 210 mg Q3M) for 24 months, or open-label alendronate for 12 months followed by romosozumab 140 mg QM for 12 months. Eligible participants were then rerandomized 1:1 within original treatment groups to placebo or denosumab 60 mg Q6M for an additional 12 months. Percentage change from baseline in BMD and bone turnover markers (BTMs) at months 24 and 36 and safety were evaluated. Of 364 participants initially randomized to romosozumab, placebo, or alendronate, 315 completed 24 months of treatment and 248 completed the extension. Romosozumab markedly increased LS and TH BMD through month 24, with largest gains observed with romosozumab 210 mg QM (LS = 15.1%; TH = 5.4%). Women receiving romosozumab who transitioned to denosumab continued to accrue BMD, whereas BMD returned toward pretreatment levels with placebo. With romosozumab 210 mg QM, bone formation marker P1NP initially increased after treatment initiation and gradually decreased to below baseline by month 12, remaining below baseline through month 24; bone resorption marker beta-CTX rapidly decreased after treatment, remaining below baseline through month 24. Transition to denosumab further decreased both BTMs, whereas after transition to placebo, P1NP returned to baseline and beta-CTX increased above baseline. Adverse events were balanced between treatment groups through month 36. These data suggest that treatment effects of romosozumab are reversible upon discontinuation and further augmented by denosumab

    The Last Word

    Get PDF

    The Lender\u27s Gauntlet Revisited

    Get PDF

    The Lender\u27s Gauntlet Revisited

    Get PDF

    Abaloparatide, a PTH receptor agonist with homology to PTHrP, enhances callus bridging and biomechanical properties in rats with femoral fracture

    Full text link
    Fractures typically heal via endochondral and intramembranous bone formation, which together form a callus that achieves union and biomechanical recovery. PTHrP, a PTH receptor agonist, plays an important physiological role in fracture healing as an endogenous stimulator of endochondral and intramembranous bone formation. Abaloparatide, a novel systemically‐administered osteoanabolic PTH receptor agonist that reduces fracture risk in women with postmenopausal osteoporosis, has 76% homology to PTHrP, suggesting it may have potential to improve fracture healing. To test this hypothesis, ninety‐six 12‐week‐old male rats underwent unilateral internally‐stabilized closed mid‐diaphyseal femoral fractures and were treated starting the next day with daily s.c. saline (Vehicle) or abaloparatide at 5 or 20 µg/kg/d for 4 or 6 weeks (16 rats/group/time point). Histomorphometry and histology analyses indicated that fracture calluses from the abaloparatide groups exhibited significantly greater total area, higher fluorescence scores indicating more newly‐formed bone, and higher fracture bridging scores versus Vehicle controls. Callus bridging score best correlated with callus cartilage score (r = 0.64) and fluorescence score (r = 0.67) at week 4, and callus area correlated with cartilage score (r = 0.60) and fluorescence score (r = 0.89) at Week 6. By micro‐CT, calluses from one or both abaloparatide groups had greater bone volume, bone volume fraction, bone mineral content, bone mineral density, and cross‐sectional area at both time points versus Vehicle controls. Destructive bending tests indicated greater callus maximum load and stiffness in one or both abaloparatide groups at both time points versus Vehicle controls. These results provide preliminary preclinical evidence for improved fracture healing with systemically‐administered abaloparatide. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop ResPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/149317/1/jor24254_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149317/2/jor24254.pd

    Sclerostin antibody improves skeletal parameters in a Brtl/+ mouse model of osteogenesis imperfecta

    Full text link
    Osteogenesis imperfecta (OI) is a genetic bone dysplasia characterized by osteopenia and easy susceptibility to fracture. Symptoms are most prominent during childhood. Although antiresorptive bisphosphonates have been widely used to treat pediatric OI, controlled trials show improved vertebral parameters but equivocal effects on long‐bone fracture rates. New treatments for OI are needed to increase bone mass throughout the skeleton. Sclerostin antibody (Scl‐Ab) therapy is potently anabolic in the skeleton by stimulating osteoblasts via the canonical wnt signaling pathway, and may be beneficial for treating OI. In this study, Scl‐Ab therapy was investigated in mice heterozygous for a typical OI‐causing Gly→Cys substitution in col1a1 . Two weeks of Scl‐Ab successfully stimulated osteoblast bone formation in a knock‐in model for moderately severe OI (Brtl/+) and in WT mice, leading to improved bone mass and reduced long‐bone fragility. Image‐guided nanoindentation revealed no alteration in local tissue mineralization dynamics with Scl‐Ab. These results contrast with previous findings of antiresorptive efficacy in OI both in mechanism and potency of effects on fragility. In conclusion, short‐term Scl‐Ab was successfully anabolic in osteoblasts harboring a typical OI‐causing collagen mutation and represents a potential new therapy to improve bone mass and reduce fractures in pediatric OI. © 2013 American Society for Bone and Mineral ResearchPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95242/1/1717_ftp.pd

    Setrusumab for the Treatment of Osteogenesis Imperfecta: 12-Month Results From the Phase 2b Asteroid Study

    Get PDF
    Osteogenesis imperfecta (OI) is a rare genetic disorder commonly caused by variants of the type I collagen genes COL1A1 and COL1A2. OI is associated with increased bone fragility, bone deformities, bone pain, and reduced growth. Setrusumab, a neutralizing antibody to sclerostin, increased areal bone mineral density (aBMD) in a 21-week phase 2a dose escalation study. The phase 2b Asteroid (NCT03118570) study evaluated the efficacy and safety of setrusumab in adults. Adults with a clinical diagnosis of OI type I, III, or IV, a pathogenic variant in COL1A1/A2, and a recent fragility fracture were randomized 1:1:1:1 to receive 2, 8, or 20 mg/kg setrusumab doses or placebo by monthly intravenous infusion during a 12-mo treatment period. Participants initially randomized to the placebo group were subsequently reassigned to receive setrusumab 20 mg/kg open label. Therefore, only results from the 2, 8, and 20 mg/kg double-blind groups are presented herein. The primary endpoint of Asteroid was change in distal radial trabecular volumetric bone mineral density (vBMD) from baseline at month 12, supported by changes in high-resolution peripheral quantitative computed tomography micro-finite element (microFE)-derived bone strength. A total of 110 adults were enrolled with similar baseline characteristics across treatment groups. At 12 mo, there was a significant increase in mean (SE) failure load in the 20 mg/kg group (3.17% [1.26%]) and stiffness in the 8 (3.06% [1.70%]) and 20 mg/kg (3.19% [1.29%]) groups from baseline. There were no changes in radial trabecula vBMD (p\u3e05). Gains in failure load and stiffness were similar across OI types. There were no significant differences in annualized fracture rates between doses. Two adults in the 20 mg/kg group experienced related serious adverse reactions. Asteroid demonstrated a beneficial effect of setrusumab on estimates of bone strength across the different types of OI and provides the basis for additional phase 3 evaluation

    Sponge amnion potential in post tooth extraction wound healing by interleukin‑6 and bone morphogenetic protein‑2 expression analysis:An animal study

    Get PDF
    Background: Wound tooth extraction is a mechanical injury that traumatizes adjacent tissue. Sponge amnion contains growth factors that can promote postextraction wound healing. Amnion membranes can be transformed into sponge form rendering it easier to use. The aim of this study is to analyze interleukin‑6 (IL‑6) and bone morphogenetic protein‑2 (BMP‑2) expression in postextraction wound healing on the 1st and 7th day after sponge amnion application. Materials and Methods: Twenty‑eight Wistar rats were used in this experimental descriptive analytical study. Fourteen animals’ first right anterior mandible tooth was extracted; then, the socket applied by sponge amnion and sutured (treatment group), while 14 others only sutured (as control group). The alveolar bone tissue of animal was observed 1st and 7th days after extraction and then was analyzed using immunohistostaining to identify the expression of IL‑6 and BMP‑2. Statistical analysis was performed using one‑way ANOVA with the level of significance (P < 0.05). Results: IL‑6 expression in the treatment group was significantly lower than the control group on the 1st and 7th days (P = 0.000). BMP‑2 expression in the treatment group was significantly higher than the control group on the 1st and 7th days (P = 0.000). Conclusion: Sponge amnion can promote the healing process by increasing the expression of BMP‑2 and decreasing IL‑6 expression
    corecore