12 research outputs found

    The PERSIANN family of global satellite precipitation data: a review and evaluation of products

    Get PDF
    Over the past 2 decades, a wide range of studies have incorporated Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) products. Currently, PERSIANN offers several precipitation products based on different algorithms available at various spatial and temporal scales, namely PERSIANN, PERSIANN-CCS, and PERSIANN-CDR. The goal of this article is to first provide an overview of the available PERSIANN precipitation retrieval algorithms and their differences. Secondly, we offer an evaluation of the available operational products over the contiguous US (CONUS) at different spatial and temporal scales using Climate Prediction Center (CPC) unified gauge-based analysis as a benchmark. Due to limitations of the baseline dataset (CPC), daily scale is the finest temporal scale used for the evaluation over CONUS. Additionally, we provide a comparison of the available products at a quasi-global scale. Finally, we highlight the strengths and limitations of the PERSIANN products and briefly discuss expected future developments.</p

    Increased searching and handling effort in tall swards lead to a Type IV functional response in small grazing herbivores

    Get PDF
    Understanding the functional response of species is important in comprehending the species’ population dynamics and the functioning of multi-species assemblages. A Type II functional response, where instantaneous intake rate increases asymptotically with sward biomass, is thought to be common in grazers. However, at tall, dense swards, food intake might decline due to mechanical limitations or if animals selectively forage on the most nutritious parts of a sward, leading to a Type IV functional response, especially for smaller herbivores. We tested the predictions that bite mass, cropping time, swallowing time and searching time increase, and bite rate decreases with increasing grass biomass for different-sized Canada geese (Branta canadensis) foraging on grass swards. Bite mass indeed showed an increasing asymptotic relationship with grass biomass. At high biomass, difficulties in handling long leaves and in locating bites were responsible for increasing cropping, swallowing, and searching times. Constant bite mass and decreasing bite rate caused the intake rate to decrease at high sward biomass after reaching an optimum, leading to a Type IV functional response. Grazer body mass affected maximum bite mass and intake rate, but did not change the shape of the functional response. As grass nutrient contents are usually highest in short swards, this Type IV functional response in geese leads to an intake rate that is maximised in these swards. The lower grass biomass at which intake rate was maximised allows resource partitioning between different-sized grazers. We argue that this Type IV functional response is of more importance than previously thought

    Recreating the California New Year's Flood Event of 1997 in a Regionally Refined Earth System Model

    Get PDF
    Abstract The 1997 New Year's flood event was the most costly in California's history. This compound extreme event was driven by a category 5 atmospheric river that led to widespread snowmelt. Extreme precipitation, snowmelt, and saturated soils produced heavy runoff causing widespread inundation in the Sacramento Valley. This study recreates the 1997 flood using the Regionally Refined Mesh capabilities of the Energy Exascale Earth System Model (RRM‐E3SM) under prescribed ocean conditions. Understanding the processes causing extreme events informs practical efforts to anticipate and prepare for such events in the future, and also provides a rich context to evaluate model skill in representing extremes. Three California‐focused RRM grids, with horizontal resolution refinement of 14 km down to 3.5 km, and six forecast lead times, 28 December 1996 at 00Z through 30 December 1996 at 12Z, are assessed for their ability to recreate the 1997 flood. Planetary to synoptic scale atmospheric circulations and integrated vapor transport are weakly influenced by horizontal resolution refinement over California. Topography and mesoscale circulations, such as the Sierra barrier jet, are better represented at finer horizontal resolutions resulting in better estimates of storm total precipitation and storm duration snowpack changes. Traditional time‐series and causal analysis frameworks are used to examine runoff sensitivities state‐wide and above major reservoirs. These frameworks show that horizontal resolution plays a more prominent role in shaping reservoir inflows, namely the magnitude and time‐series shape, than forecast lead time, 2‐to‐4 days prior to the 1997 flood onset
    corecore