12 research outputs found

    Photoluminescence Quenching and Structure of Nanocomposite Based on Graphene Oxide Layers Decorated with Nanostructured Porphyrin

    Get PDF
    Nanocomposites based on few-layers graphene oxide (FGO) decorated with porphyrin nanorods (PN) were synthesized and the interfacial interaction between these two components was investigated by using scanning electron microscopy (SEM), photoluminescence spectroscopy, resonant Raman scattering and Fourier transform infrared (FT-IR) techniques. SEM showed good exfoliation of FGO and its successful interaction with the PN. The photoluminescence results showed an important interaction between FGO and PN resulting in a quenching of the photoluminescence of the PN-FGO composite. Resonant Raman with PN aggregates and FT-IR results revealed a π- π intermolecular interaction confirming the energy/charge transfer. Moreover, the investigation of X-ray diffraction confirmed the intercalation of PN in FGO and their disaggregation. The findings presented here are an important contribution to achieving the functionalization of graphene derivative surfaces with PN for various optoelectronic applications and particularly photovoltaic cells

    Photoluminescence Quenching and Structure of Nanocomposite Based on Graphene Oxide Layers Decorated with Nanostructured Porphyrin

    Get PDF
    Nanocomposites based on few-layers graphene oxide (FGO) decorated with porphyrin nanorods (PN) were synthesized and the interfacial interaction between these two components was investigated by using scanning electron microscopy (SEM), photoluminescence spectroscopy, resonant Raman scattering and Fourier transform infrared (FT-IR) techniques. SEM showed good exfoliation of FGO and its successful interaction with the PN. The photoluminescence results showed an important interaction between FGO and PN resulting in a quenching of the photoluminescence of the PN-FGO composite. Resonant Raman with PN aggregates and FT-IR results revealed a π- π intermolecular interaction confirming the energy/charge transfer. Moreover, the investigation of X-ray diffraction confirmed the intercalation of PN in FGO and their disaggregation. The findings presented here are an important contribution to achieving the functionalization of graphene derivative surfaces with PN for various optoelectronic applications and particularly photovoltaic cells

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    The study of electronic and optical properties of perovskites CH

    No full text
    At present, Organic-inorganic hybrid methylammonium lead halide perovskites MAPbX3 (MA= CH3NH3; X = Cl, Br) have recently attract attention scientific researchers, as a promising candidate for photovoltaic and optoelectronic devices. We have studied the electronic structures and optical properties of perovskites CH3NH3PbBr3 and CH3NH3PbCl3, using density functional theory (DFT). These physical properties are calculated by CASTEP code, such as the band structures, total density of states (TDOS), absorption coefficient, refractive index and optical conductivity. The analysis of band gap shows that these two perovskites are semiconducting materials. Calculated absorption coefficient of CH3NH3PbBr3 and CH3NH3PbCl3 shows an absorption peak around 3.87 eV and 2.04 eV, respectively. The above results provide good agreement with experimental work for optoelectronic properties of CH3NH3PbBr3 and CH3NH3PbCl3 materials

    DFT study on electronic and optical properties of graphene under an external electric field

    No full text
    The paper investigates the electronic and optical properties of graphene, under the external electric field (Eext) according to perpendicular direction, using density functional theory (DFT). Applying the Eext to the graphene sheet modifies its electronic and optical properties, including the band gap energy, total density of states (TDOS), absorption coefficient, dielectric function, and refractive index. Graphene’s band gap is opened by the application of Eext to its structure. As a result of the effect of Eext on graphene layer, its absorption coefficient increases in the ultraviolet (UV) range and decreases in the visible range. We found that the electronic and optical properties of graphene material, can be altered by a perpendicular excitation applied to its structure

    The anisotropic optical properties of different polytypes (

    No full text
    In this paper, we have calculated the optical properties of the different polytypes of GaSe lamellar materials. The calculations are based on the DFT method and is performed using the CASTEP code. All optical properties have been studied in a domain that extends energetically from 10 meV to 35 eV and have been measured for a polarization // and ⊥ with the c axis. A strong anisotropic was observed, which indicates that the optical properties of the GaSe material are essentially determined by the symmetry of a single layer, exactly by the symmetry resulting from the stacking of the layers. Moreover, the absorption starts in the UV–vis spectral range, the peaks appear in the UV range. The refractive index values are nxx = 2.54, 2.55, 2.88, 10.85, nzz = 3.90, 3.90, 3.26, 11.73 for ε, β, γ, δ, respectively at zero photon energy. Furthermore, we notice that the optical properties of different polytypes (ε, β, δ, γ) of GaSe lamellar materials are obtained both in the ultraviolet field or in the visible domain are significant and give a strong argument for the use of these materials in various applications, namely photovoltaic cells, nanoelectronic, optoelectronic, optical fiber and photo-catalytic applications

    Molarity Dependent on CVD Misted ZnS Buffer Layer Performance

    Get PDF
    This paper manifests the synthesis and characterization of zinc sulfur (ZnS) thin films combined with numerical simulation (SCAPS-1D). The synthesis has been done by mixing and depositing Zn and S precursors on a preheated glass substrate (450 °C) with different molar concentrations. X-ray diffraction (XRD) shows the formation of polycrystalline ZnS with a mixed hexagonal/cubic structure. Raman spectroscopy analysis validates the films purity with a predominant peak at 348 cm-1 corresponding to the cubic structure. Composition elements and atomic ratio have been confirmed by the energy dispersive X-ray analysis (EDX). Scanning electronic microscopy (SEM) and atomic force microscopy (AFM) images show uniform and well-arranged spherical grains on the samples surface with a non-neglected roughness variation. The optical results show high transparency in the visual field of light (≃80%) and a sharp absorption edge in the UV domain. The optical band gap has been considerably decreased with increasing the concentrations reflecting its high dependency on the molarity rate. Numerical modeling results using SCAPS-1D software show that samples corresponding to 0.06 and 0.08 molarity present better performance with an efficiency of 8.94% and 8.9%, respectively

    Increasing Electro-Optical Properties of Perovskite FAPbI 3 Under the Effect of Doping by Sn

    No full text
    The development of valuable materials for photovoltaics is occurring at a rapid pace, particularly in the area of perovskite materials. The present study examines the impact of doping on the perovskite FAPbI 3 using varying percentages of tin. The researchers utilized Density Functional Theory DFT to optimize and determine the electronic and optical properties. The CASTEP code was employed for this purpose. The outcome of this research revealed that the new material displays desirable features such as high absorbency and a low bandgap, which piques the interest of scientists to apply these materials in photovoltaic systems. It is imperative to investigate high-efficiency perovskite materials with limited or no lead content, as the lead component in FAPbI 3 , a heavy metal, can cause harm to both humans and the environment

    Exploring the impact of cooling rates and pressure on fragility and structural transformations in iron monatomic metallic glasses: Insights from molecular dynamics simulations

    No full text
    International audienceIn this study, we investigate Fe metallic glass under pressures from 0 to 20 GPa and cooling rates of 5 × 1012 to 1014 K/s using molecular dynamics (MD) simulations with an embedded-atom potential (EAM). Increasing pressure enhances brittleness, indicating a higher barrier energy for the glass transition. Higher pressures narrow the glass transition region, resulting in a shorter relaxation range. At pressures above 10 GPa, especially with a cooling rate of 5 × 1012 K/s, crystal nucleation is promoted, and short-range order strengthens, primarily body-centered cubic structure (bcc) clusters. Certain pressure-cooling rate combinations show significant increments. Pressure affects density and interatomic distance, while cooling rate changes have minimal effects
    corecore