5 research outputs found

    Minutes-duration optical flares with supernova luminosities

    Get PDF
    In recent years, certain luminous extragalactic optical transients have been observed to last only a few days1. Their short observed duration implies a different powering mechanism from the most common luminous extragalactic transients (supernovae), whose timescale is weeks2. Some short-duration transients, most notably AT2018cow (ref. 3), show blue optical colours and bright radio and X-ray emission4. Several AT2018cow-like transients have shown hints of a long-lived embedded energy source5, such as X-ray variability6,7, prolonged ultraviolet emission8, a tentative X-ray quasiperiodic oscillation9,10 and large energies coupled to fast (but subrelativistic) radio-emitting ejecta11,12. Here we report observations of minutes-duration optical flares in the aftermath of an AT2018cow-like transient, AT2022tsd (the ‘Tasmanian Devil’). The flares occur over a period of months, are highly energetic and are probably nonthermal, implying that they arise from a near-relativistic outflow or jet. Our observations confirm that, in some AT2018cow-like transients, the embedded energy source is a compact object, either a magnetar or an accreting black hole

    Optical polarization and spectral properties of the H-poor superluminous supernovae SN 2021bnw and SN 2021fpl

    No full text
    New optical photometric, spectrocopic and imaging polarimetry data are combined with publicly available data to study some of the physical properties of the two H-poor superluminous supernovae (SLSN) SN 2021bnw and SN 2021fpl. For each SLSN, the best-fit parameters obtained from the magnetar model with \texttt{MOSFiT} do not depart from the range of parameter obtained on other SLSNe discussed in the literature. A spectral analysis with \texttt{SYN++} shows that SN 2021bnw is a W Type, Fast evolver, while SN 2021fpl is a 15bn Type, Slow evolver. The analysis of the polarimetry data obtained on SN 2021fpl at four epochs (+1.8, +20.6, +34.1 and +43.0 days, rest-frame) shows > 3\sigma polarization detections in the range 0.8--1 %\%. A comparison of the spectroscopy data suggests that SN 2021fpl underwent a spectral transition a bit earlier than SN 2015bn, during which, similarly, it could have underwent a polarization transition. The analysis of the polarimetry data obtained on SN 2021bnw do not show any departure from symmetry of the photosphere at an empirical diffusion timescale of \approx 2 (+81.1 days rest-frame). This result is consistent with those on the sample of W Type SLSN observed at empirical diffusion timescale \le 1 with that technique, even though it is not clear the effect of limited spectral windows varying from one object to the other. Measurements at higher empirical diffusion timescale may be needed to see any departure from symmetry as it is discussed in the literature for SN 2017egm

    SN 2019odp: A Massive Oxygen-Rich Type Ib Supernova

    No full text
    International audienceWe present and analyze observations of the Type Ib supernova (SN) 2019odp (a.k.a ZTF19abqwtfu) covering epochs within days of the explosion to the nebular phase at 360 d post-explosion. We discuss them in the context of recombination cooling emission for the early excess emission and consider progenitor models based on the nebular phase spectra. Our observations include photometric observations mainly in the optical and low to medium-resolution spectroscopic observations covering the complete observable time-range. We expand on existing methods to derive oxygen mass estimates from nebular phase spectroscopy. Our spectroscopic observations confirm the presence of He in the SN ejecta and we thus (re)classify it as a Type Ib supernova. From the pseudo-bolometric lightcurve we estimate a high ejecta mass Mej47 MM_\text{ej} \sim 4 - 7~M_\odot. The high ejecta mass, large nebular [O I]/[Ca II] line flux ratio (1.21.91.2 - 1.9) and an oxygen mass above 0.5M\gtrapprox 0.5\, M_\odot point towards a progenitor with pre-explosion mass higher than 18M18\,M_\odot. The compact nature of the progenitor (10R\lesssim 10\,R_\odot) suggests a Wolf-Rayet (WR) star as progenitor

    SN 2019odp: A Massive Oxygen-Rich Type Ib Supernova

    No full text
    International audienceWe present and analyze observations of the Type Ib supernova (SN) 2019odp (a.k.a ZTF19abqwtfu) covering epochs within days of the explosion to the nebular phase at 360 d post-explosion. We discuss them in the context of recombination cooling emission for the early excess emission and consider progenitor models based on the nebular phase spectra. Our observations include photometric observations mainly in the optical and low to medium-resolution spectroscopic observations covering the complete observable time-range. We expand on existing methods to derive oxygen mass estimates from nebular phase spectroscopy. Our spectroscopic observations confirm the presence of He in the SN ejecta and we thus (re)classify it as a Type Ib supernova. From the pseudo-bolometric lightcurve we estimate a high ejecta mass Mej47 MM_\text{ej} \sim 4 - 7~M_\odot. The high ejecta mass, large nebular [O I]/[Ca II] line flux ratio (1.21.91.2 - 1.9) and an oxygen mass above 0.5M\gtrapprox 0.5\, M_\odot point towards a progenitor with pre-explosion mass higher than 18M18\,M_\odot. The compact nature of the progenitor (10R\lesssim 10\,R_\odot) suggests a Wolf-Rayet (WR) star as progenitor

    SN 2020zbf: A fast-rising hydrogen-poor superluminous supernova with strong carbon lines

    Get PDF
    International audienceSN 2020zbf is a hydrogen-poor superluminous supernova at z=0.1947z = 0.1947 that shows conspicuous C II features at early times, in contrast to the majority of H-poor SLSNe. Its peak magnitude is MgM_{\rm g} = 21.2-21.2 mag and its rise time (24\lesssim 24 days from first light) place SN 2020zbf among the fastest rising SLSNe-I. Spectra taken from ultraviolet (UV) to near-infrared wavelengths are used for the identification of spectral features. We pay particular attention to the C II lines as they present distinctive characteristics when compared to other events. We also analyze UV and optical photometric data, and model the light curves considering three different powering mechanisms: radioactive decay of Ni, magnetar spin-down and circumstellar material interaction (CSM). The spectra of SN 2020zbf match well with the model spectra of a C-rich low-mass magnetar model. This is consistent with our light curve modelling which supports a magnetar-powered explosion with a MejM_{\rm ej} = 1.5 MM_\odot. However, we cannot discard the CSM-interaction model as it also may reproduce the observed features. The interaction with H-poor, carbon-oxygen CSM near peak could explain the presence of C II emission lines. A short plateau in the light curve, around 30 - 40 days after peak, in combination with the presence of an emission line at 6580 Å can also be interpreted as late interaction with an extended H-rich CSM. Both the magnetar and CSM interaction models of SN 2020zbf indicate that the progenitor mass at the time of explosion is between 2 - 5 MM_\odot. Modelling the spectral energy distribution of the host reveals a host mass of 108.7^{8.7}MM_\odot, a star-formation rate of 0.240.12+0.41^{+0.41}_{-0.12}MM_\odot yr1^{-1} and a metallicity of \sim 0.4 ZZ_\odot
    corecore