516 research outputs found

    Improving Sensorimotor Function and Adaptation using Stochastic Vestibular Stimulation

    Get PDF
    Astronauts experience sensorimotor changes during adaption to G-transitions that occur when entering and exiting microgravity. Post space flight, these sensorimotor disturbances can include postural and gait instability, visual performance changes, manual control disruptions, spatial disorientation, and motion sickness, all of which can hinder the operational capabilities of the astronauts. Crewmember safety would be significantly increased if sensorimotor changes brought on by gravitational changes could be mitigated and adaptation could be facilitated. The goal of this research is to investigate and develop the use of electrical stochastic vestibular stimulation (SVS) as a countermeasure to augment sensorimotor function and facilitate adaptation. For this project, SVS will be applied via electrodes on the mastoid processes at imperceptible amplitude levels. We hypothesize that SVS will improve sensorimotor performance through the phenomena of stochastic resonance, which occurs when the response of a nonlinear system to a weak input signal is optimized by the application of a particular nonzero level of noise. In line with the theory of stochastic resonance, a specific optimal level of SVS will be found and tested for each subject [1]. Three experiments are planned to investigate the use of SVS in sensory-dependent tasks and performance. The first experiment will aim to demonstrate stochastic resonance in the vestibular system through perception based motion recognition thresholds obtained using a 6-degree of freedom Stewart platform in the Jenks Vestibular Laboratory at Massachusetts Eye and Ear Infirmary. A range of SVS amplitudes will be applied to each subject and the subjectspecific optimal SVS level will be identified as that which results in the lowest motion recognition threshold, through previously established, well developed methods [2,3,4]. The second experiment will investigate the use of optimal SVS in facilitating sensorimotor adaptation to system disturbances. Subjects will adapt to wearing minifying glasses, resulting in decreased vestibular ocular reflex (VOR) gain. The VOR gain will then be intermittently measured while the subject readapts to normal vision, with and without optimal SVS. We expect that optimal SVS will cause a steepening of the adaptation curve. The third experiment will test the use of optimal SVS in an operationally relevant aerospace task, using the tilt translation sled at NASA Johnson Space Center, a test platform capable of recreating the tilt-gain and tilt-translation illusions associated with landing of a spacecraft post-space flight. In this experiment, a perception based manual control measure will be used to compare performance with and without optimal SVS. We expect performance to improve in this task when optimal SVS is applied. The ultimate goal of this work is to systematically investigate and further understand the potential benefits of stochastic vestibular stimulation in the context of human space flight so that it may be used in the future as a component of a comprehensive countermeasure plan for adaptation to G-transitions

    Exhibition of Stochastic Resonance in Vestibular Perception

    Get PDF
    Astronauts experience sensorimotor changes during spaceflight, particularly during G-transitions. Post flight sensorimotor changes include spatial disorientation, along with postural and gait instability that may degrade operational capabilities of the astronauts and endanger the crew. A sensorimotor countermeasure that mitigates these effects would improve crewmember safety and decrease risk. The goal of this research is to investigate the potential use of stochastic vestibular stimulation (SVS) as a technology to improve sensorimotor function. We hypothesize that low levels of SVS will improve sensorimotor perception through the phenomenon of stochastic resonance (SR), when the response of a nonlinear system to a weak input signal is enhanced by the application of a particular nonzero level of noise. This study aims to advance the development of SVS as a potential countermeasure by 1) demonstrating the exhibition of stochastic resonance in vestibular perception, a vital component of sensorimotor function, 2) investigating the repeatability of SR exhibition, and 3) determining the relative contribution of the semicircular canals (SCC) and otolith (OTO) organs to vestibular perceptual SR. A constant current stimulator was used to deliver bilateral bipolar SVS via electrodes placed on each of the mastoid processes, as previously done. Vestibular perceptual motion recognition thresholds were measured using a 6-degree of freedom MOOG platform and a 150 trial 3-down/1-up staircase procedure. In the first test session, we measured vestibular perceptual thresholds in upright roll-tilt at 0.2 Hz (SCC+OTO) with SVS ranging from 0-700 A. In a second test session a week later, we re-measured roll-tilt thresholds with 0, optimal (from test session 1), and 1500 A SVS levels. A subset of these subjects, plus naive subjects, participated in two additional test sessions in which we measured thresholds in supine roll-rotation at 0.2 Hz (SCC) and upright y-translation at 1 Hz (OTO) with SVS up to 700 A. A sinusoidal galvanic vestibular stimulation (GVS) perceptual threshold was also measured on each test day and used to normalize the SVS levels across subjects. In roll-tilt thresholds with SVS, the characteristic SR curve was qualitatively exhibited in 10 of 12 subjects, and the improvement in motion threshold was significant in 6 subjects, indicating that optimal SVS improved passive body motion perception in a way that is consistent with classical SR theory. A probabilistic comparison to numeric simulations further validated these experimental results. On the second test session, 4 out of the 10 SR exhibitors showed repeated improvement with SVS compared to the no SVS condition. Data collection is ongoing for the last two test sessions in which SCC and OTO only perceptual motion recognition thresholds are being measured with SVS. The final results of these test sessions will give insight into whether vestibular perceptual SR can occur when only one type of vestibular sensor is sensing motion or if it is more evident when sensory integration between the SCC and OTO is occurring during the motion. The overall purpose of this research is to further quantify the effects of SVS on various sensorimotor tasks and to gain a more fundamental understanding of how SVS causes SR in the vestibular system. In the context of human space flight, results from this research will help in understanding how SVS may be practically implemented in the future as a component of a comprehensive countermeasure plan for G-transition adaptation

    The properties of ”dark” ΛCDM halos in the Local Group

    Get PDF
    We examine the baryon content of low-mass Λ cold dark matter (ΛCDM) haloes (108 < M200/M⊙ < 5 × 109) using the APOSTLE cosmological hydrodynamical simulations. Most of these systems are free of stars and have a gaseous content set by the combined effects of cosmic reionization, which imposes a mass-dependent upper limit, and of ram-pressure stripping, which reduces it further in high-density regions. Haloes mainly affected by reionization (RELHICS; REionization-Limited H I Clouds) inhabit preferentially low-density regions and make up a population where the gas is in hydrostatic equilibrium with the dark matter potential and in thermal equilibrium with the ionizing UV background. Their thermodynamic properties are well specified, and their gas density and temperature profiles may be predicted in detail. Gas in RELHICS is nearly fully ionized but with neutral cores that span a large range of H I masses and column densities and have negligible non-thermal broadening. We present predictions for their characteristic sizes and central column densities; the massive tail of the distribution should be within reach of future blind H I surveys. Local Group RELHICS (LGRs) have some properties consistent with observed Ultra Compact High Velocity Clouds (UCHVCs) but the sheer number of the latter suggests that most UCHVCs are not RELHICS. Our results suggest that LGRs (i) should typically be beyond 500 kpc from the Milky Way or M31; (ii) have positive Galactocentric radial velocities; (iii) H I sizes not exceeding 1 kpc, and (iv) should be nearly round. The detection and characterization of RELHICS would offer a unique probe of the small-scale clustering of CDM

    Optimizing the vertebrate vestibular semicircular canal: could we balance any better?

    Get PDF
    The fluid-filled semicircular canals (SCCs) of the vestibular system are used by all vertebrates to sense angular rotation. Despite masses spanning seven decades, all mammalian SCCs are nearly the same size. We propose that the SCC represents a sensory organ that evolution has `optimally designed'. Four geometric parameters are used to characterize the SCC, and `building materials' of given physical properties are assumed. Identifying physical and physiological constraints on SCC operation, we find that the most sensitive SCC has dimensions consistent with available data.Comment: 4 pages, 3 figure

    The APOSTLE simulations: solutions to the Local Group's cosmic puzzles

    Get PDF
    The Local Group of galaxies offer some of the most discriminating tests of models of cosmic structure formation. For example, observations of the Milky Way (MW) and Andromeda satellite populations appear to be in disagreement with N-body simulations of the "Lambda Cold Dark Matter" ({\Lambda}CDM) model: there are far fewer satellite galaxies than substructures in cold dark matter halos (the "missing satellites" problem); dwarf galaxies seem to avoid the most massive substructures (the "too-big-to-fail" problem); and the brightest satellites appear to orbit their host galaxies on a thin plane (the "planes of satellites" problem). Here we present results from APOSTLE (A Project Of Simulating The Local Environment), a suite of cosmological hydrodynamic simulations of twelve volumes selected to match the kinematics of the Local Group (LG) members. Applying the Eagle code to the LG environment, we find that our simulations match the observed abundance of LG galaxies, including the satellite galaxies of the MW and Andromeda. Due to changes to the structure of halos and the evolution in the LG environment, the simulations reproduce the observed relation between stellar mass and velocity dispersion of individual dwarf spheroidal galaxies without necessitating the formation of cores in their dark matter profiles. Satellite systems form with a range of spatial anisotropies, including one similar to that of the MW, confirming that such a configuration is not unexpected in {\Lambda}CDM. Finally, based on the observed velocity dispersion, size, and stellar mass, we provide new estimates of the maximum circular velocity for the halos of nine MW dwarf spheroidals

    How does one become spiritual? The Spiritual Modeling Inventory of Life Environments (SMILE)

    Get PDF
    We report psychometric properties, correlates and underlying theory of the Spiritual Modeling Index of Life Environments (SMILE), a measure of perceptions of spiritual models, defined as everyday and prominent people who have functioned for respondents as exemplars of spiritual qualities, such as compassion, self-control, or faith. Demographic, spiritual, and personality correlates were examined in an ethnically diverse sample of college students from California, Connecticut, and Tennessee (N=1010). A summary measure of model influence was constructed from perceived models within family, school, religious organization, and among prominent individuals from both tradition and media. The SMILE, based on concepts from Bandura\u27s (1986) Social Cognitive Theory, was well-received by respondents. The summary measure demonstrated good 7-week test/retest reliability (r=.83); patterns of correlation supporting convergent, divergent, and criterion-related validity; demographic differences in expected directions; and substantial individual heterogeneity. Implications are discussed for further research and for pastoral, educational, and health-focused interventions

    Specialist training in Fiji: Why do graduates migrate, and why do they remain? A qualitative study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Specialist training was established in the late 1990s at the Fiji School of Medicine. Losses of graduates to overseas migration and to the local private sector prompted us to explore the reasons for these losses from the Fiji public workforce.</p> <p>Methods</p> <p>Data were collected on the whereabouts and highest educational attainments of the 66 Fiji doctors who had undertaken specialist training to at least the diploma level between 1997 and 2004. Semistructured interviews focusing on career decisions were carried out with 36 of these doctors, who were purposively sampled to include overseas migrants, temporary overseas trainees, local private practitioners and public sector doctors.</p> <p>Results</p> <p>120 doctors undertook specialist training to at least the diploma level between 1997 and 2004; 66 of the graduates were Fiji citizens or permanent residents; 54 originated from other countries in the region. Among Fiji graduates, 42 completed a diploma and 24 had either completed (21) or were enrolled (3) in a master's programme. Thirty-two (48.5%) were working in the public sectors, four (6.0%) were temporarily training overseas, 30.3% had migrated overseas and the remainder were mostly in local private practice. Indo-Fijian ethnicity and non-completion of full specialist training were associated with lower retention in the public sectors, while gender had little impact. Decisions to leave the public sectors were complex, with concerns about political instability and family welfare predominating for overseas migrants, while working conditions not conducive to family life or frustrations with career progression predominated for local private practitioners. Doctors remaining in the public sectors reported many satisfying aspects to their work despite frustrations, though 40% had seriously considered resigning from the public service and 60% were unhappy with their career progression.</p> <p>Conclusion</p> <p>Overall, this study provides some support for the view that local or regional postgraduate training may increase retention of doctors. Attention to career pathways and other sources of frustration, in addition to encouragement to complete training, should increase the likelihood of such programmes' reaching their full potentials.</p
    • …
    corecore