5 research outputs found
DNA methylation and DNA methyltransferases
The prevailing views as to the form, function, and regulation of genomic methylation patterns have their origin many years in the past, at a time when the structure of the mammalian genome was only dimly perceived, when the number of protein-encoding mammalian genes was believed to be at least five times greater than the actual number, and when it was not understood that only ~10% of the genome is under selective pressure and likely to have biological function. We use more recent findings from genome biology and whole-genome methylation profiling to provide a reappraisal of the shape of genomic methylation patterns and the nature of the changes that they undergo during gametogenesis and early development. We observe that the sequences that undergo deep changes in methylation status during early development are largely sequences without regulatory function. We also discuss recent findings that begin to explain the remarkable fidelity of maintenance methylation. Rather than a general overview of DNA methylation in mammals (which has been the subject of many reviews), we present a new analysis of the distribution of methylated CpG dinucleotides across the multiple sequence compartments that make up the mammalian genome, and we offer an updated interpretation of the nature of the changes in methylation patterns that occur in germ cells and early embryos. We discuss the cues that might designate specific sequences for demethylation or de novo methylation during development, and we summarize recent findings on mechanisms that maintain methylation patterns in mammalian genomes. We also describe the several human disorders, each very different from the other, that are caused by mutations in DNA methyltransferase genes
Independent functions of DNMT1 and USP7 at replication foci
Abstract Background It has been reported that USP7 (ubiquitin-specific protease 7) prevents ubiquitylation and degradation of DNA methyltransferase 1 (DNMT1) by direct binding of USP7 to the glycine-lysine (GK) repeats that join the N-terminal regulatory domain of DNMT1 to the C-terminal methyltransferase domain. The USP7-DNMT1 interaction was reported to be mediated by acetylation of lysine residues within the (GK) repeats. Results We found that DNMT1 is present at normal levels in mouse and human cells that contain undetectable levels of USP7. Substitution of the (GK) repeats by (GQ) repeats prevents lysine acetylation but does not affect the stability of DNMT1 or the ability of the mutant protein to restore genomic methylation levels when expressed in Dnmt1-null ES cells. Furthermore, both USP7 and PCNA are recruited to sites of DNA replication independently of the presence of DNMT1, and there is no evidence that DNMT1 is degraded in cycling cells after S phase. Conclusions Multiple lines of evidence indicate that homeostasis of DNMT1 in somatic cells is controlled primarily at the level of transcription and that interaction of USP7 with the (GK) repeats of DNMT1 is unlikely to play a major role in the stabilization of DNMT1 protein
Architecture of a Full-length Retroviral Integrase Monomer and Dimer, Revealed by Small Angle X-ray Scattering and Chemical Cross-linking*
We determined the size and shape of full-length avian sarcoma virus (ASV) integrase (IN) monomers and dimers in solution using small angle x-ray scattering. The low resolution data obtained establish constraints for the relative arrangements of the three component domains in both forms. Domain organization within the small angle x-ray envelopes was determined by combining available atomic resolution data for individual domains with results from cross-linking coupled with mass spectrometry. The full-length dimer architecture so revealed is unequivocally different from that proposed from x-ray crystallographic analyses of two-domain fragments, in which interactions between the catalytic core domains play a prominent role. Core-core interactions are detected only in cross-linked IN tetramers and are required for concerted integration. The solution dimer is stabilized by C-terminal domain (CTD-CTD) interactions and by interactions of the N-terminal domain in one subunit with the core and CTD in the second subunit. These results suggest a pathway for formation of functional IN-DNA complexes that has not previously been considered and possible strategies for preventing such assembly