26 research outputs found

    Quantitative pupillometry and radiographic markers of intracranial midline shift: A pilot study

    Get PDF
    BackgroundAsymmetric pupil reactivity or size can be early clinical indicators of midbrain compression due to supratentorial ischemic stroke or primary intraparenchymal hemorrhage (IPH). Radiographic midline shift is associated with worse functional outcomes and life-saving interventions. Better understanding of quantitative pupil characteristics would be a non–invasive, safe, and cost-effective way to improve identification of life-threatening mass effect and resource utilization of emergent radiographic imaging. We aimed to better characterize the association between midline shift at various anatomic levels and quantitative pupil characteristics.MethodsWe conducted a multicenter retrospective study of brain CT images within 75 min of a quantitative pupil observation from patients admitted to Neuro-ICUs between 2016 and 2020 with large (>1/3 of the middle cerebral artery territory) acute supratentorial ischemic stroke or primary IPH > 30 mm3. For each image, we measured midline shift at the septum pellucidum (MLS-SP), pineal gland shift (PGS), the ratio of the ipsilateral to contralateral midbrain width (IMW/CMW), and other exploratory markers of radiographic shift/compression. Pupil reactivity was measured using an automated infrared pupillometer (NeurOptics®, Inc.), specifically the proprietary algorithm for Neurological Pupil Index® (NPi). We used rank-normalization and linear mixed-effects models, stratified by diagnosis and hemorrhagic conversion, to test associations of radiographic markers of shift and asymmetric pupil reactivity (Diff NPi), adjusting for age, lesion volume, Glasgow Coma Scale, and osmotic medications.ResultsOf 53 patients with 74 CT images, 26 (49.1%) were female, and median age was 67 years. MLS-SP and PGS were greater in patients with IPH, compared to patients with ischemic stroke (6.2 v. 4.0 mm, 5.6 v. 3.4 mm, respectively). We found no significant associations between pupil reactivity and the radiographic markers of shift when adjusting for confounders. However, we found potentially relevant relationships between MLS-SP and Diff NPi in our IPH cohort (β = 0.11, SE 0.04, P = 0.01), and PGS and Diff NPi in the ischemic stroke cohort (β = 0.16, SE 0.09, P = 0.07).ConclusionWe found the relationship between midline shift and asymmetric pupil reactivity may differ between IPH and ischemic stroke. Our study may serve as necessary preliminary data to guide further prospective investigation into how clinical manifestations of radiographic midline shift differ by diagnosis and proximity to the midbrain

    Health workforce and governance: the crisis in Nigeria

    Get PDF
    Background In Nigeria, several challenges have been reported within the health sector, especially in training, funding, employment, and deployment of the health workforce. We aimed to review recent health workforce crises in the Nigerian health sector to identify key underlying causes and provide recommendations toward preventing and/or managing potential future crises in Nigeria. Methods We conducted a scoping literature search of PubMed to identify studies on health workforce and health governance in Nigeria. A critical analysis, with extended commentary, on recent health workforce crises (2010–2016) and the health system in Nigeria was conducted. Results The Nigerian health system is relatively weak, and there is yet a coordinated response across the country. A number of health workforce crises have been reported in recent times due to several months’ salaries owed, poor welfare, lack of appropriate health facilities and emerging factions among health workers. Poor administration and response across different levels of government have played contributory roles to further internal crises among health workers, with different factions engaged in protracted supremacy challenge. These crises have consequently prevented optimal healthcare delivery to the Nigerian population. Conclusions An encompassing stakeholders’ forum in the Nigerian health sector remain essential. The national health system needs a solid administrative policy foundation that allows coordination of priorities and partnerships in the health workforce and among various stakeholders. It is hoped that this paper may prompt relevant reforms in health workforce and governance in Nigeria toward better health service delivery in the country

    Natural language processing of radiology reports to detect complications of ischemic stroke

    No full text
    Background Abstraction of critical data from unstructured radiologic reports using natural language processing (NLP) is a powerful tool to automate the detection of important clinical features and enhance research efforts. We present a set of NLP approaches to identify critical findings in patients with acute ischemic stroke from radiology reports of computed tomography (CT) and magnetic resonance imaging (MRI). Methods We trained machine learning classifiers to identify categorical outcomes of edema, midline shift (MLS), hemorrhagic transformation, and parenchymal hematoma, as well as rule-based systems (RBS) to identify intraventricular hemorrhage (IVH) and continuous MLS measurements within CT/MRI reports. Using a derivation cohort of 2289 reports from 550 individuals with acute middle cerebral artery territory ischemic strokes, we externally validated our models on reports from a separate institution as well as from patients with ischemic strokes in any vascular territory. Results In all data sets, a deep neural network with pretrained biomedical word embeddings (BioClinicalBERT) achieved the highest discrimination performance for binary prediction of edema (area under precision recall curve [AUPRC] > 0.94), MLS (AUPRC > 0.98), hemorrhagic conversion (AUPRC > 0.89), and parenchymal hematoma (AUPRC > 0.76). BioClinicalBERT outperformed lasso regression (p  Conclusions Our study demonstrates robust performance and external validity of a core NLP tool kit for identifying both categorical and continuous outcomes of ischemic stroke from unstructured radiographic text data. Medically tailored NLP methods have multiple important big data applications, including scalable electronic phenotyping, augmentation of clinical risk prediction models, and facilitation of automatic alert systems in the hospital setting

    Table_8_Quantitative pupillometry and radiographic markers of intracranial midline shift: A pilot study.docx

    No full text
    BackgroundAsymmetric pupil reactivity or size can be early clinical indicators of midbrain compression due to supratentorial ischemic stroke or primary intraparenchymal hemorrhage (IPH). Radiographic midline shift is associated with worse functional outcomes and life-saving interventions. Better understanding of quantitative pupil characteristics would be a non–invasive, safe, and cost-effective way to improve identification of life-threatening mass effect and resource utilization of emergent radiographic imaging. We aimed to better characterize the association between midline shift at various anatomic levels and quantitative pupil characteristics.MethodsWe conducted a multicenter retrospective study of brain CT images within 75 min of a quantitative pupil observation from patients admitted to Neuro-ICUs between 2016 and 2020 with large (>1/3 of the middle cerebral artery territory) acute supratentorial ischemic stroke or primary IPH > 30 mm3. For each image, we measured midline shift at the septum pellucidum (MLS-SP), pineal gland shift (PGS), the ratio of the ipsilateral to contralateral midbrain width (IMW/CMW), and other exploratory markers of radiographic shift/compression. Pupil reactivity was measured using an automated infrared pupillometer (NeurOptics®, Inc.), specifically the proprietary algorithm for Neurological Pupil Index® (NPi). We used rank-normalization and linear mixed-effects models, stratified by diagnosis and hemorrhagic conversion, to test associations of radiographic markers of shift and asymmetric pupil reactivity (Diff NPi), adjusting for age, lesion volume, Glasgow Coma Scale, and osmotic medications.ResultsOf 53 patients with 74 CT images, 26 (49.1%) were female, and median age was 67 years. MLS-SP and PGS were greater in patients with IPH, compared to patients with ischemic stroke (6.2 v. 4.0 mm, 5.6 v. 3.4 mm, respectively). We found no significant associations between pupil reactivity and the radiographic markers of shift when adjusting for confounders. However, we found potentially relevant relationships between MLS-SP and Diff NPi in our IPH cohort (β = 0.11, SE 0.04, P = 0.01), and PGS and Diff NPi in the ischemic stroke cohort (β = 0.16, SE 0.09, P = 0.07).ConclusionWe found the relationship between midline shift and asymmetric pupil reactivity may differ between IPH and ischemic stroke. Our study may serve as necessary preliminary data to guide further prospective investigation into how clinical manifestations of radiographic midline shift differ by diagnosis and proximity to the midbrain.</p

    Table_2_Quantitative pupillometry and radiographic markers of intracranial midline shift: A pilot study.docx

    No full text
    BackgroundAsymmetric pupil reactivity or size can be early clinical indicators of midbrain compression due to supratentorial ischemic stroke or primary intraparenchymal hemorrhage (IPH). Radiographic midline shift is associated with worse functional outcomes and life-saving interventions. Better understanding of quantitative pupil characteristics would be a non–invasive, safe, and cost-effective way to improve identification of life-threatening mass effect and resource utilization of emergent radiographic imaging. We aimed to better characterize the association between midline shift at various anatomic levels and quantitative pupil characteristics.MethodsWe conducted a multicenter retrospective study of brain CT images within 75 min of a quantitative pupil observation from patients admitted to Neuro-ICUs between 2016 and 2020 with large (>1/3 of the middle cerebral artery territory) acute supratentorial ischemic stroke or primary IPH > 30 mm3. For each image, we measured midline shift at the septum pellucidum (MLS-SP), pineal gland shift (PGS), the ratio of the ipsilateral to contralateral midbrain width (IMW/CMW), and other exploratory markers of radiographic shift/compression. Pupil reactivity was measured using an automated infrared pupillometer (NeurOptics®, Inc.), specifically the proprietary algorithm for Neurological Pupil Index® (NPi). We used rank-normalization and linear mixed-effects models, stratified by diagnosis and hemorrhagic conversion, to test associations of radiographic markers of shift and asymmetric pupil reactivity (Diff NPi), adjusting for age, lesion volume, Glasgow Coma Scale, and osmotic medications.ResultsOf 53 patients with 74 CT images, 26 (49.1%) were female, and median age was 67 years. MLS-SP and PGS were greater in patients with IPH, compared to patients with ischemic stroke (6.2 v. 4.0 mm, 5.6 v. 3.4 mm, respectively). We found no significant associations between pupil reactivity and the radiographic markers of shift when adjusting for confounders. However, we found potentially relevant relationships between MLS-SP and Diff NPi in our IPH cohort (β = 0.11, SE 0.04, P = 0.01), and PGS and Diff NPi in the ischemic stroke cohort (β = 0.16, SE 0.09, P = 0.07).ConclusionWe found the relationship between midline shift and asymmetric pupil reactivity may differ between IPH and ischemic stroke. Our study may serve as necessary preliminary data to guide further prospective investigation into how clinical manifestations of radiographic midline shift differ by diagnosis and proximity to the midbrain.</p

    Table_5_Quantitative pupillometry and radiographic markers of intracranial midline shift: A pilot study.docx

    No full text
    BackgroundAsymmetric pupil reactivity or size can be early clinical indicators of midbrain compression due to supratentorial ischemic stroke or primary intraparenchymal hemorrhage (IPH). Radiographic midline shift is associated with worse functional outcomes and life-saving interventions. Better understanding of quantitative pupil characteristics would be a non–invasive, safe, and cost-effective way to improve identification of life-threatening mass effect and resource utilization of emergent radiographic imaging. We aimed to better characterize the association between midline shift at various anatomic levels and quantitative pupil characteristics.MethodsWe conducted a multicenter retrospective study of brain CT images within 75 min of a quantitative pupil observation from patients admitted to Neuro-ICUs between 2016 and 2020 with large (>1/3 of the middle cerebral artery territory) acute supratentorial ischemic stroke or primary IPH > 30 mm3. For each image, we measured midline shift at the septum pellucidum (MLS-SP), pineal gland shift (PGS), the ratio of the ipsilateral to contralateral midbrain width (IMW/CMW), and other exploratory markers of radiographic shift/compression. Pupil reactivity was measured using an automated infrared pupillometer (NeurOptics®, Inc.), specifically the proprietary algorithm for Neurological Pupil Index® (NPi). We used rank-normalization and linear mixed-effects models, stratified by diagnosis and hemorrhagic conversion, to test associations of radiographic markers of shift and asymmetric pupil reactivity (Diff NPi), adjusting for age, lesion volume, Glasgow Coma Scale, and osmotic medications.ResultsOf 53 patients with 74 CT images, 26 (49.1%) were female, and median age was 67 years. MLS-SP and PGS were greater in patients with IPH, compared to patients with ischemic stroke (6.2 v. 4.0 mm, 5.6 v. 3.4 mm, respectively). We found no significant associations between pupil reactivity and the radiographic markers of shift when adjusting for confounders. However, we found potentially relevant relationships between MLS-SP and Diff NPi in our IPH cohort (β = 0.11, SE 0.04, P = 0.01), and PGS and Diff NPi in the ischemic stroke cohort (β = 0.16, SE 0.09, P = 0.07).ConclusionWe found the relationship between midline shift and asymmetric pupil reactivity may differ between IPH and ischemic stroke. Our study may serve as necessary preliminary data to guide further prospective investigation into how clinical manifestations of radiographic midline shift differ by diagnosis and proximity to the midbrain.</p

    Table_9_Quantitative pupillometry and radiographic markers of intracranial midline shift: A pilot study.docx

    No full text
    BackgroundAsymmetric pupil reactivity or size can be early clinical indicators of midbrain compression due to supratentorial ischemic stroke or primary intraparenchymal hemorrhage (IPH). Radiographic midline shift is associated with worse functional outcomes and life-saving interventions. Better understanding of quantitative pupil characteristics would be a non–invasive, safe, and cost-effective way to improve identification of life-threatening mass effect and resource utilization of emergent radiographic imaging. We aimed to better characterize the association between midline shift at various anatomic levels and quantitative pupil characteristics.MethodsWe conducted a multicenter retrospective study of brain CT images within 75 min of a quantitative pupil observation from patients admitted to Neuro-ICUs between 2016 and 2020 with large (>1/3 of the middle cerebral artery territory) acute supratentorial ischemic stroke or primary IPH > 30 mm3. For each image, we measured midline shift at the septum pellucidum (MLS-SP), pineal gland shift (PGS), the ratio of the ipsilateral to contralateral midbrain width (IMW/CMW), and other exploratory markers of radiographic shift/compression. Pupil reactivity was measured using an automated infrared pupillometer (NeurOptics®, Inc.), specifically the proprietary algorithm for Neurological Pupil Index® (NPi). We used rank-normalization and linear mixed-effects models, stratified by diagnosis and hemorrhagic conversion, to test associations of radiographic markers of shift and asymmetric pupil reactivity (Diff NPi), adjusting for age, lesion volume, Glasgow Coma Scale, and osmotic medications.ResultsOf 53 patients with 74 CT images, 26 (49.1%) were female, and median age was 67 years. MLS-SP and PGS were greater in patients with IPH, compared to patients with ischemic stroke (6.2 v. 4.0 mm, 5.6 v. 3.4 mm, respectively). We found no significant associations between pupil reactivity and the radiographic markers of shift when adjusting for confounders. However, we found potentially relevant relationships between MLS-SP and Diff NPi in our IPH cohort (β = 0.11, SE 0.04, P = 0.01), and PGS and Diff NPi in the ischemic stroke cohort (β = 0.16, SE 0.09, P = 0.07).ConclusionWe found the relationship between midline shift and asymmetric pupil reactivity may differ between IPH and ischemic stroke. Our study may serve as necessary preliminary data to guide further prospective investigation into how clinical manifestations of radiographic midline shift differ by diagnosis and proximity to the midbrain.</p

    Table_3_Quantitative pupillometry and radiographic markers of intracranial midline shift: A pilot study.docx

    No full text
    BackgroundAsymmetric pupil reactivity or size can be early clinical indicators of midbrain compression due to supratentorial ischemic stroke or primary intraparenchymal hemorrhage (IPH). Radiographic midline shift is associated with worse functional outcomes and life-saving interventions. Better understanding of quantitative pupil characteristics would be a non–invasive, safe, and cost-effective way to improve identification of life-threatening mass effect and resource utilization of emergent radiographic imaging. We aimed to better characterize the association between midline shift at various anatomic levels and quantitative pupil characteristics.MethodsWe conducted a multicenter retrospective study of brain CT images within 75 min of a quantitative pupil observation from patients admitted to Neuro-ICUs between 2016 and 2020 with large (>1/3 of the middle cerebral artery territory) acute supratentorial ischemic stroke or primary IPH > 30 mm3. For each image, we measured midline shift at the septum pellucidum (MLS-SP), pineal gland shift (PGS), the ratio of the ipsilateral to contralateral midbrain width (IMW/CMW), and other exploratory markers of radiographic shift/compression. Pupil reactivity was measured using an automated infrared pupillometer (NeurOptics®, Inc.), specifically the proprietary algorithm for Neurological Pupil Index® (NPi). We used rank-normalization and linear mixed-effects models, stratified by diagnosis and hemorrhagic conversion, to test associations of radiographic markers of shift and asymmetric pupil reactivity (Diff NPi), adjusting for age, lesion volume, Glasgow Coma Scale, and osmotic medications.ResultsOf 53 patients with 74 CT images, 26 (49.1%) were female, and median age was 67 years. MLS-SP and PGS were greater in patients with IPH, compared to patients with ischemic stroke (6.2 v. 4.0 mm, 5.6 v. 3.4 mm, respectively). We found no significant associations between pupil reactivity and the radiographic markers of shift when adjusting for confounders. However, we found potentially relevant relationships between MLS-SP and Diff NPi in our IPH cohort (β = 0.11, SE 0.04, P = 0.01), and PGS and Diff NPi in the ischemic stroke cohort (β = 0.16, SE 0.09, P = 0.07).ConclusionWe found the relationship between midline shift and asymmetric pupil reactivity may differ between IPH and ischemic stroke. Our study may serve as necessary preliminary data to guide further prospective investigation into how clinical manifestations of radiographic midline shift differ by diagnosis and proximity to the midbrain.</p

    Table_1_Quantitative pupillometry and radiographic markers of intracranial midline shift: A pilot study.docx

    No full text
    BackgroundAsymmetric pupil reactivity or size can be early clinical indicators of midbrain compression due to supratentorial ischemic stroke or primary intraparenchymal hemorrhage (IPH). Radiographic midline shift is associated with worse functional outcomes and life-saving interventions. Better understanding of quantitative pupil characteristics would be a non–invasive, safe, and cost-effective way to improve identification of life-threatening mass effect and resource utilization of emergent radiographic imaging. We aimed to better characterize the association between midline shift at various anatomic levels and quantitative pupil characteristics.MethodsWe conducted a multicenter retrospective study of brain CT images within 75 min of a quantitative pupil observation from patients admitted to Neuro-ICUs between 2016 and 2020 with large (>1/3 of the middle cerebral artery territory) acute supratentorial ischemic stroke or primary IPH > 30 mm3. For each image, we measured midline shift at the septum pellucidum (MLS-SP), pineal gland shift (PGS), the ratio of the ipsilateral to contralateral midbrain width (IMW/CMW), and other exploratory markers of radiographic shift/compression. Pupil reactivity was measured using an automated infrared pupillometer (NeurOptics®, Inc.), specifically the proprietary algorithm for Neurological Pupil Index® (NPi). We used rank-normalization and linear mixed-effects models, stratified by diagnosis and hemorrhagic conversion, to test associations of radiographic markers of shift and asymmetric pupil reactivity (Diff NPi), adjusting for age, lesion volume, Glasgow Coma Scale, and osmotic medications.ResultsOf 53 patients with 74 CT images, 26 (49.1%) were female, and median age was 67 years. MLS-SP and PGS were greater in patients with IPH, compared to patients with ischemic stroke (6.2 v. 4.0 mm, 5.6 v. 3.4 mm, respectively). We found no significant associations between pupil reactivity and the radiographic markers of shift when adjusting for confounders. However, we found potentially relevant relationships between MLS-SP and Diff NPi in our IPH cohort (β = 0.11, SE 0.04, P = 0.01), and PGS and Diff NPi in the ischemic stroke cohort (β = 0.16, SE 0.09, P = 0.07).ConclusionWe found the relationship between midline shift and asymmetric pupil reactivity may differ between IPH and ischemic stroke. Our study may serve as necessary preliminary data to guide further prospective investigation into how clinical manifestations of radiographic midline shift differ by diagnosis and proximity to the midbrain.</p
    corecore