17 research outputs found

    Pooled-DNA sequencing identifies genomic regions of selection in Nigerian isolates of Plasmodium falciparum.

    Get PDF
    BACKGROUND: The burden of falciparum malaria is especially high in sub-Saharan Africa. Differences in pressure from host immunity and antimalarial drugs lead to adaptive changes responsible for high level of genetic variations within and between the parasite populations. Population-specific genetic studies to survey for genes under positive or balancing selection resulting from drug pressure or host immunity will allow for refinement of interventions. METHODS: We performed a pooled sequencing (pool-seq) of the genomes of 100 Plasmodium falciparum isolates from Nigeria. We explored allele-frequency based neutrality test (Tajima's D) and integrated haplotype score (iHS) to identify genes under selection. RESULTS: Fourteen shared iHS regions that had at least 2 SNPs with a score > 2.5 were identified. These regions code for genes that were likely to have been under strong directional selection. Two of these genes were the chloroquine resistance transporter (CRT) on chromosome 7 and the multidrug resistance 1 (MDR1) on chromosome 5. There was a weak signature of selection in the dihydrofolate reductase (DHFR) gene on chromosome 4 and MDR5 genes on chromosome 13, with only 2 and 3 SNPs respectively identified within the iHS window. We observed strong selection pressure attributable to continued chloroquine and sulfadoxine-pyrimethamine use despite their official proscription for the treatment of uncomplicated malaria. There was also a major selective sweep on chromosome 6 which had 32 SNPs within the shared iHS region. Tajima's D of circumsporozoite protein (CSP), erythrocyte-binding antigen (EBA-175), merozoite surface proteins - MSP3 and MSP7, merozoite surface protein duffy binding-like (MSPDBL2) and serine repeat antigen (SERA-5) were 1.38, 1.29, 0.73, 0.84 and 0.21, respectively. CONCLUSION: We have demonstrated the use of pool-seq to understand genomic patterns of selection and variability in P. falciparum from Nigeria, which bears the highest burden of infections. This investigation identified known genomic signatures of selection from drug pressure and host immunity. This is evidence that P. falciparum populations explore common adaptive strategies that can be targeted for the development of new interventions

    Population genomics diversity of Plasmodium falciparum in malaria patients attending Okelele Health Centre, Okelele, Ilorin, Kwara State, Nigeria.

    Get PDF
    Background: Plasmodium falciparum, the most dangerous malaria parasite species to humans remains an important public health concern in Okelele, a rural community in Ilorin, Kwara State, Nigeria. There is however little information about the genetic diversity of Plasmodium falciparum in Nigeria. Objective: To determine the population genomic diversity of Plasmodium falciparum in malaria patients attending Okelele Community Healthcare Centre, Okelele, Ilorin, Kwara State. Methods: In this study, 50 Plasmodium falciparum strains Merozoite Surface Protein 1, Merozoite Surface Protein 2 and Glutamate Rich Protein were analysed from Okelele Health Centre, Okelele, Ilorin, Nigeria. Genetic diversity of P. falciparum isolates were analysed from nested polymerase chain reactions (PCR) of the MSP-1 (K1, MAD 20 and RO33), MSP-2 (FC27 and 3D7) and Glutamate Rich Protein allelic families respectively. Results: Polyclonal infections were more in majority of the patients for MSP-1 allelic families while monoclonal infections were more for MSP-2 allelic families. Multiplicity of infection for MSP-1, MSP-2 and GLURP were 1.7, 1.8 and 2.05 respectively Conclusion: There is high genetic diversity in MSP \u2013 2 and GLURP allelic families of Plasmodium falciparum isolates from Okelele Health Centre, Ilorin, Nigeria

    Genetic polymorphisms in malaria vaccine candidate Plasmodium falciparum reticulocyte-binding protein homologue-5 among populations in Lagos, Nigeria

    Get PDF
    BACKGROUND: Vaccines are the most reliable alternative to elicit sterile immunity against malaria but their development has been hindered by polymorphisms and strain-specificity in previously studied antigens. New vaccine candidates are therefore urgently needed. Highly conserved Plasmodium falciparum reticulocyte-binding protein homologue-5 (PfRH5) has been identified as a potential candidate for anti-disease vaccine development. PfRH5 is essential for erythrocyte invasion by merozoites and crucial for parasite survival. However, there is paucity of data on the extent of genetic variations on PfRH5 in field isolates of Plasmodium falciparum. This study described genetic polymorphisms at the high affinity binding polypeptides (HABPs) 36718, 36727, 36728 of PfRH5 in Nigerian isolates of P. falciparum. This study tested the hypothesis that only specific conserved B and T cell epitopes on PfRH5 HABPs are crucial for vaccine development. METHODS: One hundred and ninety-five microscopically confirmed P. falciparum samples collected in a prospective cross-sectional study of three different populations in Lagos, Nigeria. Genetic diversity and haplotype construct of Pfrh5 gene were determined using bi-directional sequencing approach. Tajima's D and the ratio of nonsynonymous vs synonymous mutations were utilized to estimate the extent of balancing and directional selection in the pfrh5 gene. RESULTS: Sequence analysis revealed three haplotypes of PfRH5 with negative Tajima's D and dN/dS value of - 1.717 and 0.011 ± 0.020, respectively. A single nucleotide polymorphism, SNP (G → A) at position 608 was observed, which resulted in a change of the amino acid cysteine at position 203 to tyrosine. Haplotype and nucleotide diversities were 0.318 ± 0.016 and 0.0046 ± 0.0001 while inter-population genetic differentiation ranged from 0.007 to 0.037. Five polypeptide variants were identified, the most frequent being KTKYH with a frequency of 51.3%. One B-cell epitope, 151 major histocompatibility complex (MHC) class II T-cell epitopes, four intrinsically unstructured regions (IURs) and six MHC class I T-cell epitopes were observed in the study. Phylogenetic analysis of the sequences showed clustering and evidence of evolutionary relationship with 3D7, PAS-2 and FCB-2 RH5 sequences. CONCLUSIONS: This study has revealed low level of genetic polymorphisms in PfRH5 antigen with B- and T-cell epitopes in intrinsically unstructured regions along the PfRH5 gene in Lagos, Nigeria. A broader investigation is however required in other parts of the country to support the possible inclusion of PfRH5 in a cross-protective multi-component vaccine

    A barcode of multilocus nuclear DNA identifies genetic relatedness in pre- and post-Artemether/Lumefantrine treated Plasmodium falciparum in Nigeria.

    Get PDF
    BACKGROUND: The decline in the efficacy of artemisinin-based combination treatment (ACT) in some endemic regions threatens the progress towards global elimination of malaria. Molecular surveillance of drug resistance in malaria-endemic regions is vital to detect the emergence and spread of mutant strains. METHODS: We observed 89 malaria patients for the efficacy of artemether-lumefantrine for the treatment of uncomplicated Plasmodium falciparum infections in Lagos, Nigeria and determined the prevalence of drug resistant strains in the population. Parasite clearance rates were determined by microscopy and the highly sensitive var gene acidic terminal sequence (varATS) polymerase chain reaction for 65 patients with samples on days 0, 1, 3, 7, 14, 21 and 28 after commencement of treatment. The genomic finger print of parasite DNA from pre- and post-treatment samples were determined using 24 nuclear single nucleotide polymorphisms (SNP) barcode for P. falciparum. Drug resistance associated alleles in chloroquine resistance transporter gene (crt-76), multidrug resistance genes (mdr1-86 and mdr1-184), dihydropteroate synthase (dhps-540), dihydrofolate reductase (dhfr-108) and kelch domain (K-13580) were genotyped by high resolution melt analysis of polymerase chain reaction (PCR) fragments. RESULTS: By varATS qPCR, 12 (18.5%) of the participants had detectable parasite DNA in their blood three days after treatment, while eight (12.3%) individuals presented with genotypable day 28 parasitaemia. Complexity of infection (CoI) was 1.30 on day 0 and 1.34 on day 28, the mean expected heterozygosity (HE) values across all barcodes were 0.50 ± 0.05 and 0.56 ± 0.05 on days 0 and 28 respectively. Barcode (π) pairwise comparisons showed high genetic relatedness of day 0 and day 28 parasite isolates in three (37.5%) of the eight individuals who presented with re-appearing infections. Crt-76 mutant allele was present in 38 (58.5%) isolates. The mdr1-86 mutant allele was found in 56 (86.2%) isolates. No mutation in the K-13580 was observed. CONCLUSIONS: Persistence of DNA-detectable parasitaemia in more than 18% of cases after treatment and indications of genetic relatedness between pre- and post-treatment infections warrants further investigation of a larger population for signs of reduced ACT efficacy in Nigeria

    Comparative prevalence of Plasmodium falciparum malaria in patients attending Okelele Health Centre, Okelele, Ilorin, Nigeria

    No full text
    Background: In Okelele, Ilorin, Kwara State, Nigeria, malaria remains an important public health concern with a little information about its prevalence. Objective: To determine the prevalence of malaria infection at Okelele Health Centre, Okelele, Ilorin. Methodology: A cross-sectional descriptive study in which patients were diagnosed clinically with severe or uncomplicated malaria at the study site was conducted. Rapid diagnostic testing (RDT) for malaria and microscopy using Giemsa staining by thick and thin blood smears were done for study patients. Results: In this study, 200 malaria patients attending Okelele Health Centre, Okelele, Ilorin, were tested for malaria infection, with females having the highest prevalence rates and parasitemia density. The highest positivity rates were found in children <6 years while adolescents had the lowest prevalence rates. Socioeconomic factors of patients such as occupation and education played a major role in malaria prevalence. Conclusion: Although RDT is quick and easy to use, negative malaria cases gotten by RDT should be confirmed by expert microscopy to prevent misdiagnosis of malaria

    Additional file 1: Figure S1. of Pooled-DNA sequencing identifies genomic regions of selection in Nigerian isolates of Plasmodium falciparum

    No full text
    Map of the study area in South Western Nigeria. Shaded areas indicate regions of study and lines linking regions show the spatial distance (km) between sites. (PDF 89 kb

    Pyrethroids resistance intensity and resistance mechanisms in Anopheles gambiae from malaria vector surveillance sites in Nigeria.

    No full text
    Anopheles gambiae, An. coluzzii and An. arabiensis are the three major vectors of malaria in Nigeria. These mosquitoes have developed resistance to different insecticides. Insecticides resistance intensity assay was recently introduced to provide insight into the potential operational significance of insecticide resistance. Here, we present data on pyrethroids resistance intensity and resistance mechanisms from six vector surveillance sites (Lagos, Ogun, Edo, Anambra, Kwara and Niger) in Nigeria. Adult Anopheles reared from larval collections were tested using WHO insecticides susceptibility protocol with 1x concentration of permethrin and deltamethrin followed with intensity assays with 5x and 10x concentrations of both insecticides. Synergistic and biochemical assays were carried out and underlying resistance mechanisms determined following standard protocols. Anopheles gambiae constituted >50% samples tested in five sites. Permethrin and deltamethrin resistance was observed at all the sites. The Kdt50 varied from 15 minutes (CI = 13.6-17.2) in deltamethrin to 42.1 minutes (CI = 39.4-44.1) in permethrin. For both insecticides, Kdt95 was >30 minutes with 25% to 87% post exposure mortality at the different sites. The West Africa knock down resistance (kdr-w) mechanism was found at each site. Resistant An. gambiae from Lagos, Ogun and Niger synergized prior to permethrin or deltamethrin exposure showed significant mortality (89-100%) compared to unsynergized mosquitoes (Lagos, p = 0.031; Ogun, p = 0.025; Niger, p = 0.018). Biochemical analyses revealed significant increased levels of P450 enzymes in resistant Anopheles gambiae from Lagos (p = 0.038); Ogun (p = 0.042) and Niger (p = 0.028) in addition to GST in Lagos (p = 0.028) and Ogun (p = 0.033). Overall, the results revealed high pyrethroid resistance associated with increased activities of metabolic enzymes (P450 + GST) in An. gambiae and An. coluzzii from Lagos and Ogun. The presence of kdr + P450 conferred moderate resistance whereas low resistance was the case where kdr was the sole resistance mechanism. Findings thus suggests that elevated levels of cytochrome P450 enzymes together with GST were responsible for high or severe pyrethroid resistance

    Genetic diversity and complexity of Plasmodium falciparum infections in Lagos, Nigeria

    No full text
    Objective: To analyse the genetic diversity of Plasmodium falciparum (P. falciparum) using msp-1 and msp-2 as antigenic markers. Methods: Parasite DNA was extracted from 100 blood samples collected from P. falciparum-positive patients confirmed by microscopy, and followed by PCR-genotyping targeting the msp-1 (block2) and msp-2 (block 3) allelic families. Results: All the families of msp-1 (K1, MAD20 and R033) and msp-2 (FC27 and 3D7) locus were observed. Results revealed that K1 (60/100) was the most predominant genotype of msp-1 allelic family followed by the genotypes of MAD20 (50/100) and R033 (45/100). In the msp-2 locus, FC27 genotype (62/100) showed higher frequency than 3D7 genotype (55/100). The allelic families were detected either alone or in combination with other families. However, no R033/MAD20 combination was observed. Multiplicity of infection (MOI) with msp-1 was higher in the locality of Ikorodu (1.50) than in Lekki (1.39). However, MOI with msp-2 was lower in the locality of Ikorodu (1.14) than in Lekki (1.76). There was no significant difference in the mean MOI between the two study areas (P=0.427). Conclusions: The observation of limited diversity of malaria parasites may imply that the use of antigenic markers as genotyping tools for distinguishing recrudescence and re-infections with P. falciparum during drug trials is subjective
    corecore