10,003 research outputs found
Scanning tunneling microscopy and spectroscopy of sodium-chloride overlayers on the stepped Cu(311) surface: Experimental and theoretical study
The physical properties of ultrathin NaCl overlayers on the stepped Cu(311)
surface have been characterized using scanning tunneling microscopy (STM) and
spectroscopy, and density functional calculations. Simulations of STM images
and differential conductance spectrum were based on the Tersoff-Hamann
approximation for tunneling with corrections for the modified tunneling barrier
at larger voltages and calculated Kohn-Sham states. Characteristic features
observed in the STM images can be directly related to calculated electronic and
geometric properties of the overlayers. The measured apparent barrier heights
for the mono-, bi-, and trilayers of NaCl and the corresponding
adsorption-induced changes in the work function, as obtained from the distance
dependence of the tunneling current, are well reproduced by and understood from
the calculated results. The measurements revealed a large reduction of the
tunneling conductance in a wide voltage region, resembling a band gap. However,
the simulated spectrum showed that only the onset at positive sample voltages
may be viewed as a valence band edge, whereas the onset at negative voltages is
caused by the drastic effect of the electric field from the tip on the
tunneling barrier
Semi-leptonic B decays into higher charmed resonances
We apply HQET to semi-leptonic meson decays into a variety of excited
charm states. Using three realistic meson models with fermionic light degrees
of freedom, we examine the extent that the sum of exclusive single charmed
states account for the inclusive semi-leptonic decay rate. The consistency
of form factors with the Bjorken and Voloshin sum rules is also investigated.Comment: Latex, 27 pages. A few references and errors corrected, to appear in
Phys. Rev.
Kinetics versus thermodynamics in materials modeling: The case of the di-vacancy in iron
Monte Carlo models are widely used for the study of microstructural and microchemical evolution of materials under irradiation. However, they often link explicitly the relevant activation energies to the energy difference between local equilibrium states. We provide a simple example (di-vacancy migration in iron) in which a rigorous activation energy calculation, by means of both empirical interatomic potentials and density functional theory methods, clearly shows that such a link is not granted, revealing a migration mechanism that a thermodynamics-linked activation energy model cannot predict. Such a mechanism is, however, fully consistent with thermodynamics. This example emphasizes the importance of basing Monte Carlo methods on models where the activation energies are rigorously calculated, rather than deduced from widespread heuristic equations.Fil: Djurabekova, F.. No especifíca;Fil: Malerba, L.. No especifíca;Fil: Pasianot, Roberto Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; ArgentinaFil: Olsson, P.. No especifíca;Fil: Nordlund, K.. No especifíca
Unitary ambiguity in the extraction of the E2/M1 ratio for the transition
The resonant electric quadrupole amplitude in the transition is of great interest for the understanding of
baryon structure. Various dynamical models have been developed to extract it
from the corresponding photoproduction multipole of pions on nucleons. It is
shown that once such a model is specified, a whole class of unitarily
equivalent models can be constructed, all of them providing exactly the same
fit to the experimental data. However, they may predict quite different
resonant amplitudes. Therefore, the extraction of the E2/M1() ratio (bare or dressed) which is based on a dynamical
model using a largely phenomenological interaction is not unique.Comment: 10 pages revtex including 4 postscript figure
A GH115 alpha-glucuronidase from Schizophyllum commune contributes to the synergistic enzymatic deconstruction of softwood glucuronoarabinoxylan
Background: Lignocellulosic biomass from softwood represents a valuable resource for the production of biofuels and bio-based materials as alternatives to traditional pulp and paper products. Hemicelluloses constitute an extremely heterogeneous fraction of the plant cell wall, as their molecular structures involve multiple monosaccharide components, glycosidic linkages, and decoration patterns. The complete enzymatic hydrolysis of wood hemicelluloses into monosaccharides is therefore a complex biochemical process that requires the activities of multiple degradative enzymes with complementary activities tailored to the structural features of a particular substrate. Glucuronoarabinoxylan (GAX) is a major hemicellulose component in softwood, and its structural complexity requires more enzyme specificities to achieve complete hydrolysis compared to glucuronoxylans from hardwood and arabinoxylans from grasses. Results: We report the characterisation of a recombinant α-glucuronidase (Agu115) from Schizophyllum commune capable of removing (4-O-methyl)-glucuronic acid ((Me)GlcA) residues from polymeric and oligomeric xylan. The enzyme is required for the complete deconstruction of spruce glucuronoarabinoxylan (GAX) and acts synergistically with other xylan-degrading enzymes, specifically a xylanase (Xyn10C), an α-l-arabinofuranosidase (AbfA), and a β-xylosidase (XynB). Each enzyme in this mixture showed varying degrees of potentiation by the other activities, likely due to increased physical access to their respective target monosaccharides. The exo-acting Agu115 and AbfA were unable to remove all of their respective target side chain decorations from GAX, but their specific activity was significantly boosted by the addition of the endo-Xyn10C xylanase. We demonstrate that the proposed enzymatic cocktail (Agu115 with AbfA, Xyn10C and XynB) achieved almost complete conversion of GAX to arabinofuranose (Araf), xylopyranose (Xylp), and MeGlcA monosaccharides. Addition of Agu115 to the enzymatic cocktail contributes specifically to 25 % of the conversion. However, traces of residual oligosaccharides resistant to this combination of enzymes were still present after deconstruction, due to steric hindrances to enzyme access to the substrate. Conclusions: Our GH115 α-glucuronidase is capable of finely tailoring the molecular structure of softwood GAX, and contributes to the almost complete saccharification of GAX in synergy with other exo- and endo-xylan-acting enzymes. This has great relevance for the cost-efficient production of biofuels from softwood lignocellulose.Lauren S. McKee, Hampus Sunner, George E. Anasontzis, Guillermo Toriz, Paul Gatenholm, Vincent Bulone, Francisco Vilaplana and Lisbeth Olsso
Adolescent chronic illness : a qualitative study of psychosocial adjustment
Introduction: The purpose of this study was to investigate the psychosocial issues facing young people living with a chronic medical condition. Materials and Methods: Subjects were young people with a range of medical conditions who were on a waiting list to participate in the Chronic Illness Peer Support programme at the Centre for Adolescent Health, Royal Children\u27s Hospital, Melbourne, Australia. Young people agreed to in-depth interviews which were taped and transcribed. Thematic analysis was undertaken by two researchers working independently. Results: Thirty-five young people were interviewed. Thematic analysis revealed five broad themes: control (in control, under control, out of control); emotional reactions (happiness, frustration, anger, sadness, anxiety); acceptance (of illness, of others, of self); coping strategies, and; a search for meaning. The importance of social connections was emphasised. While illustrating the difficulties of managing a chronic medical condition during adolescence, a generally positive message emerges about these young people. Conclusions: Many young people with chronic illness appear relatively resilient in the face of the adjustment challenges presented by their illness. Interventions that allow a young person to explore meaning, build self-esteem, and acceptance through positive social connections are likely to improve adjustment outcomes in this group.<br /
Dynamic Simulations of the Kosterlitz-Thouless Phase Transition
Based on the short-time dynamic scaling form, a novel dynamic approach is
proposed to tackle numerically the Kosterlitz-Thouless phase transition. Taking
the two-dimensional XY model as an example, the exponential divergence of the
spatial correlation length, the transition temperature and all
critical exponents are computed. Compared with Monte Carlo simulations in
equilibrium, we obtain data at temperatures nearer to .Comment: to appear in Phys. Rev. E in Rapid Communicatio
The Threshold Pion-Photoproduction of Nucleons In The Chiral Quark Model
In this paper, we show that the low energy theorem (LET) of the threshold
pion-photoproduction can be fully recovered in the quark model. An essential
result of this investigation is that the quark-pion operators are obtained from
the effective chiral Lagrangian, and the low energy theorem does not require
the constraints on the internal structures of the nucleon. The pseudoscalar
quark-pion coupling generates an additional term at order only
in the isospin amplitude . The role of the transitions between the
nucleon and the resonance and P-wave baryons are also discussed,
we find that the leading contributions to the isospin amplitudes at
are from the transition between the P-wave baryons and the nucleon and the
charge radius of the nucleon. The leading contribution from the P-wave baryons
only affects the neutral pion production, and improve the agreement with data
significantly. The transition between the resonance and the
nucleon only gives an order corrections to
EuroSDR GeoBIM project a study in Europe on how to use the potentials of BIM and GEO data in practice
In both the Geo and BIM domains, it is widely acknowledged that the integration of geo-data and BIM-data is beneficial and a crucial step in facing the multi-disciplinary challenges of our built environment. The result of this integration - broadly termed as GeoBIM - has a range of potential uses from district study to road safety. However, from the data perspective, this integration raises the question of how to integrate very detailed design and construction data from the BIM domain with contextual geospatial data (both 2D and 3D) that model a very diverse range of aspects of the wider built and natural environment. This paper reports work carried out during the second phase of the EuroSDR GeoBIM project, which sets out to understand the general status of GeoBIM across Europe with particular focus from a National Mapping and Cadastral Agency perspective. The first phase of the project reviewed the current status of GeoBIM in participating countries and identified the need for specific detailed use cases to overcome both the lack of awareness and the lack of understanding of the potential of GeoBIM. We present both an update on the current status of GeoBIM, and additional details of one of the selected use cases relating to planning/development permits. For the latter, we have been able to develop a detailed workflow highlighting specific data exchange points within the process to issue a development permit, allowing a more in-depth identification of both the roles and data needs at each stage
Photoproduction of the Eta-Prime Mesons as a New Tool to Probe Baryon Resonances
We examine eta prime photoproduction, as a novel tool to study baryon
resonances around 2 GeV, of particular interest to the quark shell model, which
predicts a number of them. We find important roles of the form factors at the
strong vertices, and show that the N^*(2080) can be probed efficiently by this
reaction.Comment: Will be published in Phys. Rev.
- …