377 research outputs found
The anomalous threshold, confinement, and an essential singularity in the heavy-light form factor
The analytic behavior of the heavy-light meson form factor is investigated
using several relativistic examples including unconfined, weakly confined, and
strongly confined mesons. It is observed that confinement erases the anomalous
threshold singularity and also induces an essential singularity at the normal
annihilation threshold. In the weak confinement limit, the "would be" anomalous
threshold contribution is identical to that of the real singularity on its
space-like side.Comment: Latex 2.09 with epsf.sty. 24 pages of text and 8 postscript figures.
Postscript version of complete paper will also be available soon at
http://phenom.physics.wisc.edu/pub/preprints/1997/madph-97-983 or at
ftp://phenom.physics.wisc.edu/pub/preprints/1997/madph-97-98
Mechanical behavior of biopolymer composite coatings on plastic films by depth-sensing indentation : a nanoscale study
Fundamental physical behaviors of materials at the nanoscale level are crucial when local aspects govern the macroscale performance of nanocomposites, e.g., interface and surface phenomena. Because of the increasing interest in biopolymer nanocomposite coatings for many different applications (e.g., optical devices, displays/screens, and packaging), this work investigates the potential of nanoindentation as a method for clarifying the interplay between distinct phases (i.e., organic and inorganic) at local level in thin biopolymer films loaded with nanoparticles. The nanomechanical features of pullulan nanocomposite coatings laid on polyethylene terephthalate (PET) were quantified in terms of elastic modulus (E), hardness (H), and creep (C) through an instrumented indentation test composed of a loading-holding-unloading cycle. Colloidal silica (CS) and cellulose nanocrystals (CNCs) were used as spherical and rod-like nanoparticles, respectively. An overall reinforcing effect was shown for all nanocomposite coatings over the pristine (unfilled) pullulan coating. A size effect was also disclosed for the CS-loaded surfaces, with the highest E value recorded for the largest particles (8.19\u202f\ub1\u202f0.35\u202fGPa) and the highest H value belonging to the smallest ones (395.41\u202f\ub1\u202f25.22\u202fMPa). Comparing CS and CNCs, the addition of spherical nanoparticles had a greater effect on the surface hardness than cellulose nanowhiskers (353.50\u202f\ub1\u202f83.52\u202fMPa and 321.36\u202f\ub1\u202f43.26\u202fMPa, respectively). As for the elastic modulus, the addition of CS did not provide any improvement over both the bare and CNC-loaded pullulan coatings, whereas the coating including CNCs exhibited higher E values (p\u202f<\u202f.05). Finally, CS-loaded pullulan coatings were the best performing in terms of C properties, with an average indentation depth of 16.5\u202f\ub1\u202f1.85\u202fnm under a load of 3c190\u202f\u3bcN. These results are discussed in terms of local distribution gradients, surface chemistry of nanoparticles, and how nanoparticle aggregation occurred in the dry nanocomposite coatings
Methodological concepts for integrated assessment of agricultural and environmental policies in SEAMLESS-IF
Agricultural and Food Policy, Environmental Economics and Policy, Farm Management, Land Economics/Use,
QCD strings with spinning quarks
We construct a consistent action for a massive spinning quark on the end of a
QCD string that leads to pure Thomas precession of the quark's spin. The string
action is modified by the addition of Grassmann degrees of freedom to the
string such that the equations of motion for the quark spin follow from
boundary conditions, just as do those for the quark's position.Comment: REVTeX4, 10 pages, no figure
Assessing the role of EO in biodiversity monitoring: options for integrating in-situ observations with EO within the context of the EBONE concept
The European Biodiversity Observation Network (EBONE) is a European contribution on terrestrial monitoring to GEO BON, the Group on Earth Observations Biodiversity Observation Network. EBONEâs aims are to develop a system of biodiversity observation at regional, national and European levels by assessing existing approaches in terms of their validity and applicability starting in Europe, then expanding to regions in Africa. The objective of EBONE is to deliver:
1. A sound scientific basis for the production of statistical estimates of stock and change of key indicators;
2. The development of a system for estimating past changes and forecasting and testing policy options and management strategies for threatened ecosystems and species;
3. A proposal for a cost-effective biodiversity monitoring system.
There is a consensus that Earth Observation (EO) has a role to play in monitoring biodiversity. With its capacity to observe detailed spatial patterns and variability across large areas at regular intervals, our instinct suggests that EO could deliver the type of spatial and temporal coverage that is beyond reach with in-situ efforts. Furthermore, when considering the emerging networks of in-situ observations, the prospect of enhancing the quality of the information whilst reducing cost through integration is compelling. This report gives a realistic assessment of the role of EO in biodiversity monitoring and the options for integrating in-situ observations with EO within the context of the EBONE concept (cfr. EBONE-ID1.4). The assessment is mainly based on a set of targeted pilot studies. Building on this assessment, the report then presents a series of recommendations on the best options for using EO in an effective, consistent and sustainable biodiversity monitoring scheme.
The issues that we faced were many:
1. Integration can be interpreted in different ways. One possible interpretation is: the combined use of independent data sets to deliver a different but improved data set; another is: the use of one data set to complement another dataset.
2. The targeted improvement will vary with stakeholder group: some will seek for more efficiency, others for more reliable estimates (accuracy and/or precision); others for more detail in space and/or time or more of everything.
3. Integration requires a link between the datasets (EO and in-situ). The strength of the link between reflected electromagnetic radiation and the habitats and their biodiversity observed in-situ is function of many variables, for example: the spatial scale of the observations; timing of the observations; the adopted nomenclature for classification; the complexity of the landscape in terms of composition, spatial structure and the physical environment; the habitat and land cover types under consideration.
4. The type of the EO data available varies (function of e.g. budget, size and location of region, cloudiness, national and/or international investment in airborne campaigns or space technology) which determines its capability to deliver the required output.
EO and in-situ could be combined in different ways, depending on the type of integration we wanted to achieve and the targeted improvement. We aimed for an improvement in accuracy (i.e. the reduction in error of our indicator estimate calculated for an environmental zone). Furthermore, EO would also provide the spatial patterns for correlated in-situ data.
EBONE in its initial development, focused on three main indicators covering:
(i) the extent and change of habitats of European interest in the context of a general habitat assessment;
(ii) abundance and distribution of selected species (birds, butterflies and plants); and
(iii) fragmentation of natural and semi-natural areas.
For habitat extent, we decided that it did not matter how in-situ was integrated with EO as long as we could demonstrate that acceptable accuracies could be achieved and the precision could consistently be improved. The nomenclature used to map habitats in-situ was the General Habitat Classification. We considered the following options where the EO and in-situ play different roles:
using in-situ samples to re-calibrate a habitat map independently derived from EO; improving the accuracy of in-situ sampled habitat statistics, by post-stratification with correlated EO data; and using in-situ samples to train the classification of EO data into habitat types where the EO data delivers full coverage or a larger number of samples.
For some of the above cases we also considered the impact that the sampling strategy employed to deliver the samples would have on the accuracy and precision achieved.
Restricted access to European wide species data prevented work on the indicator âabundance and distribution of speciesâ.
With respect to the indicator âfragmentationâ, we investigated ways of delivering EO derived measures of habitat patterns that are meaningful to sampled in-situ observations
Effective Lagrangian Approach to the Theory of Eta Photoproduction in the Region
We investigate eta photoproduction in the resonance region
within the effective Lagrangian approach (ELA), wherein leading contributions
to the amplitude at the tree level are taken into account. These include the
nucleon Born terms and the leading -channel vector meson exchanges as the
non-resonant pieces. In addition, we consider five resonance contributions in
the - and - channel; besides the dominant , these are:
and . The amplitudes for the
and the photoproduction near threshold have significant
differences, even as they share common contributions, such as those of the
nucleon Born terms. Among these differences, the contribution to the
photoproduction of the -channel excitation of the is the most
significant. We find the off-shell properties of the spin-3/2 resonances to be
important in determining the background contributions. Fitting our effective
amplitude to the available data base allows us to extract the quantity
, characteristic of the
photoexcitation of the resonance and its decay into the
-nucleon channel, of interest to precise tests of hadron models. At the
photon point, we determine it to be from
the old data base, and from a
combination of old data base and new Bates data. We obtain the helicity
amplitude for to be from the old data base, and from the combination of the old data base and new Bates
data, compared with the results of the analysis of pion photoproduction
yielding , in the same units.Comment: 43 pages, RevTeX, 9 figures available upon request, to appear in
Phys. Rev.
Ghost poles in the nucleon propagator in the linear-sigma model approach and its role in pion-nucleon low-energy theorems
Complex mass poles, or ghost poles, are present in the Hartree-Fock solution
of the Schwinger-Dyson equation for the nucleon propagator in renormalizable
models with Yukawa-type meson-nucleon couplings, as shown many years ago by
Brown, Puff, and Wilets (BPW). These ghosts violate basic theorems of quantum
field theory and their origin is related to the ultraviolet behavior of the
model interactions. Recently, Krein et.al, proved that the ghosts disappear
when vertex corrections are included in a self-consistent way, softening the
interaction sufficiently in the ultraviolet region. In previous studies of
pion-nucleon scattering using "dressed" nucleon propagator and bare vertices,
did by Nutt and Wilets in the 70's (NW), it was found that if these poles are
explicitly included, the value of the isospin-even amplitude A+ is satisfied
within 20% at threshold. The absence of a theoretical explanation for the
ghosts and the lack of chiral symmetry in these previous studies led us to
re-investigate the subject using the approach of the linear-sigma model and
study the interplay of low-energy theorems for pion-nucleon scattering and
ghost poles. For bare interaction vertices we find that ghosts are present in
this model as well and that the A+ value is badly described. As a first
approach to remove these complex poles, we dress the vertices with
phenomenological form factors and a reasonable agreement with experiment is
achieved. In order to fix the two cutoff parameters, we use the A+ value for
the chiral limit (m_pion -> 0) and the experimental value of the isoscalar
scattering length. Finally, we test our model by calculating the phase shifts
for the S waves and we find a good agreement at threshold.Comment: 13 pages, 5 embedded figures, Latex 2.09, Revtex.sty, epsf.sty. To be
published in Nucl. Phys.
Incidence, Risk Factors, and Outcomes of Patients Who Develop Mucosal Barrier Injury-Laboratory Confirmed Bloodstream Infections in the First 100 Days after Allogeneic Hematopoietic Stem Cell Transplant
Importance: Patients undergoing hematopoietic stem cell transplant (HSCT) are at risk for bloodstream infection (BSI) secondary to translocation of bacteria through the injured mucosa, termed mucosal barrier injury-laboratory confirmed bloodstream infection (MBI-LCBI), in addition to BSI secondary to indwelling catheters and infection at other sites (BSI-other). Objective: To determine the incidence, timing, risk factors, and outcomes of patients who develop MBI-LCBI in the first 100 days after HSCT. Design, Setting, and Participants: A case-cohort retrospective analysis was performed using data from the Center for International Blood and Marrow Transplant Research database on 16875 consecutive pediatric and adult patients receiving a first allogeneic HSCT from January 1, 2009, to December 31, 2016. Patients were classified into 4 categories: MBI-LCBI (1481 [8.8%]), MBI-LCBI and BSI-other (698 [4.1%]), BSI-other only (2928 [17.4%]), and controls with no BSI (11768 [69.7%]). Statistical analysis was performed from April 5 to July 17, 2018. Main Outcomes and Measures: Demographic characteristics and outcomes, including overall survival, chronic graft-vs-host disease, and transplant-related mortality (only for patients with malignant disease), were compared among groups. Results: Of the 16875 patients in the study (9737 [57.7%] male; median [range] age, 47 [0.04-82] years) 13686 (81.1%) underwent HSCT for a malignant neoplasm, and 3189 (18.9%) underwent HSCT for a nonmalignant condition. The cumulative incidence of MBI-LCBI was 13% (99% CI, 12%-13%) by day 100, and the cumulative incidence of BSI-other was 21% (99% CI, 21%-22%) by day 100. Median (range) time from transplant to first MBI-LCBI was 8 (<1 to 98) days vs 29 (<1 to 100) days for BSI-other. Multivariable analysis revealed an increased risk of MBI-LCBI with poor Karnofsky/Lansky performance status (hazard ratio [HR], 1.21 [99% CI, 1.04-1.41]), cord blood grafts (HR, 2.89 [99% CI, 1.97-4.24]), myeloablative conditioning (HR, 1.46 [99% CI, 1.19-1.78]), and posttransplant cyclophosphamide graft-vs-host disease prophylaxis (HR, 1.85 [99% CI, 1.38-2.48]). One-year mortality was significantly higher for patients with MBI-LCBI (HR, 1.81 [99% CI, 1.56-2.12]), BSI-other (HR, 1.81 [99% CI, 1.60-2.06]), and MBI-LCBI plus BSI-other (HR, 2.65 [99% CI, 2.17-3.24]) compared with controls. Infection was more commonly reported as a cause of death for patients with MBI-LCBI (139 of 740 [18.8%]), BSI (251 of 1537 [16.3%]), and MBI-LCBI plus BSI (94 of 435 [21.6%]) than for controls (566 of 4740 [11.9%]). Conclusions and Relevance: In this cohort study, MBI-LCBI, in addition to any BSIs, were associated with significant morbidity and mortality after HSCT. Further investigation into risk reduction should be a clinical and scientific priority in this patient population
- âŠ