1,414 research outputs found

    CPA\u27s guide to marriage, divorce and family taxation

    Get PDF
    https://egrove.olemiss.edu/aicpa_guides/1441/thumbnail.jp

    Microwave (SSM/I) Estimates of the Precipitation Rate to Improve Numerical Atmospheric Model Forecasts

    Get PDF
    Delay in the spin-up of precipitation early in numerical atmospheric forecasts is a deficiency correctable by diabatic initialization combined with diabatic forcing. For either to be effective requires some knowledge of the magnitude and vertical placement of the latent heating fields. Until recently the best source of cloud and rain water data was the remotely sensed vertical integrated precipitation rate or liquid water content. Vertical placement of the condensation remains unknown. Some information about the vertical distribution of the heating rates and precipitating liquid water and ice can be obtained from retrieval techniques that use a physical model of precipitating clouds to refine and improve the interpretation of the remotely sensed data. A description of this procedure and an examination of its 3-D liquid water products, along with improved modeling methods that enhance or speed-up storm development is discussed

    Forecast model applications of retrieved three dimensional liquid water fields

    Get PDF
    Forecasts are made for tropical storm Emily using heating rates derived from the SSM/I physical retrievals described in chapters 2 and 3. Average values of the latent heating rates from the convective and stratiform cloud simulations, used in the physical retrieval, are obtained for individual 1.1 km thick vertical layers. Then, the layer-mean latent heating rates are regressed against the slant path-integrated liquid and ice precipitation water contents to determine the best fit two parameter regression coefficients for each layer. The regression formulae and retrieved precipitation water contents are utilized to infer the vertical distribution of heating rates for forecast model applications. In the forecast model, diabatic temperature contributions are calculated and used in a diabatic initialization, or in a diabatic initialization combined with a diabatic forcing procedure. Our forecasts show that the time needed to spin-up precipitation processes in tropical storm Emily is greatly accelerated through the application of the data

    Physical retrieval of precipitation water contents from Special Sensor Microwave/Imager (SSM/I) data. Part 1: A cloud ensemble/radiative parameterization for sensor response (report version)

    Get PDF
    The physical retrieval of geophysical parameters based upon remotely sensed data requires a sensor response model which relates the upwelling radiances that the sensor observes to the parameters to be retrieved. In the retrieval of precipitation water contents from satellite passive microwave observations, the sensor response model has two basic components. First, a description of the radiative transfer of microwaves through a precipitating atmosphere must be considered, because it is necessary to establish the physical relationship between precipitation water content and upwelling microwave brightness temperature. Also the spatial response of the satellite microwave sensor (or antenna pattern) must be included in the description of sensor response, since precipitation and the associated brightness temperature field can vary over a typical microwave sensor resolution footprint. A 'population' of convective cells, as well as stratiform clouds, are simulated using a computationally-efficient multi-cylinder cloud model. Ensembles of clouds selected at random from the population, distributed over a 25 km x 25 km model domain, serve as the basis for radiative transfer calculations of upwelling brightness temperatures at the SSM/I frequencies. Sensor spatial response is treated explicitly by convolving the upwelling brightness temperature by the domain-integrated SSM/I antenna patterns. The sensor response model is utilized in precipitation water content retrievals

    PMLB: A Large Benchmark Suite for Machine Learning Evaluation and Comparison

    Full text link
    The selection, development, or comparison of machine learning methods in data mining can be a difficult task based on the target problem and goals of a particular study. Numerous publicly available real-world and simulated benchmark datasets have emerged from different sources, but their organization and adoption as standards have been inconsistent. As such, selecting and curating specific benchmarks remains an unnecessary burden on machine learning practitioners and data scientists. The present study introduces an accessible, curated, and developing public benchmark resource to facilitate identification of the strengths and weaknesses of different machine learning methodologies. We compare meta-features among the current set of benchmark datasets in this resource to characterize the diversity of available data. Finally, we apply a number of established machine learning methods to the entire benchmark suite and analyze how datasets and algorithms cluster in terms of performance. This work is an important first step towards understanding the limitations of popular benchmarking suites and developing a resource that connects existing benchmarking standards to more diverse and efficient standards in the future.Comment: 14 pages, 5 figures, submitted for review to JML

    Diabatic forcing and initialization with assimilation of cloud and rain water in a forecast model: Methodology

    Get PDF
    The focus of this part of the investigation is to find one or more general modeling techniques that will help reduce the time taken by numerical forecast models to initiate or spin-up precipitation processes and enhance storm intensity. If the conventional data base could explain the atmospheric mesoscale flow in detail, then much of our problem would be eliminated. But the data base is primarily synoptic scale, requiring that a solution must be sought either in nonconventional data, in methods to initialize mesoscale circulations, or in ways of retaining between forecasts the model generated mesoscale dynamics and precipitation fields. All three methods are investigated. The initialization and assimilation of explicit cloud and rainwater quantities computed from conservation equations in a mesoscale regional model are examined. The physical processes include condensation, evaporation, autoconversion, accretion, and the removal of rainwater by fallout. The question of how to initialize the explicit liquid water calculations in numerical models and how to retain information about precipitation processes during the 4-D assimilation cycle are important issues that are addressed. The explicit cloud calculations were purposely kept simple so that different initialization techniques can be easily and economically tested. Precipitation spin-up processes associated with three different types of weather phenomena are examined. Our findings show that diabatic initialization, or diabatic initialization in combination with a new diabatic forcing procedure, work effectively to enhance the spin-up of precipitation in a mesoscale numerical weather prediction forecast. Also, the retention of cloud and rain water during the analysis phase of the 4-D data assimilation procedure is shown to be valuable. Without detailed observations, the vertical placement of the diabatic heating remains a critical problem

    A System for Accessible Artificial Intelligence

    Full text link
    While artificial intelligence (AI) has become widespread, many commercial AI systems are not yet accessible to individual researchers nor the general public due to the deep knowledge of the systems required to use them. We believe that AI has matured to the point where it should be an accessible technology for everyone. We present an ongoing project whose ultimate goal is to deliver an open source, user-friendly AI system that is specialized for machine learning analysis of complex data in the biomedical and health care domains. We discuss how genetic programming can aid in this endeavor, and highlight specific examples where genetic programming has automated machine learning analyses in previous projects.Comment: 14 pages, 5 figures, submitted to Genetic Programming Theory and Practice 2017 worksho
    • …
    corecore