17 research outputs found

    Human liver glycogen phosphorylase inhibitors bind at a new allosteric site

    Get PDF
    AbstractBackground: Glycogen phosphorylases catalyze the breakdown of glycogen to glucose-1-phosphate for glycolysis. Maintaining control of blood glucose levels is critical in minimizing the debilitating effects of diabetes, making liver glycogen phosphorylase a potential therapeutic target.Results: The binding site in human liver glycogen phosphorylase (HLGP) for a class of promising antidiabetic agents was identified crystallographically. The site is novel and functions allosterically by stabilizing the inactive conformation of HLGP. The initial view of the complex revealed key structural information and inspired the design of a new class of inhibitors which bind with nanomolar affinity and whose crystal structure is also described.Conclusions: We have identified the binding site of a new class of allosteric HLGP inhibitors. The crystal structure revealed the details of inhibitor binding, led to the design of a new class of compounds, and should accelerate efforts to develop therapeutically relevant molecules for the treatment of diabetes

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Listeria pathogenesis and molecular virulence determinants

    Get PDF
    The gram-positive bacterium Listeria monocytogenes is the causative agent of listeriosis, a highly fatal opportunistic foodborne infection. Pregnant women, neonates, the elderly, and debilitated or immunocompromised patients in general are predominantly affected, although the disease can also develop in normal individuals. Clinical manifestations of invasive listeriosis are usually severe and include abortion, sepsis, and meningoencephalitis. Listeriosis can also manifest as a febrile gastroenteritis syndrome. In addition to humans, L. monocytogenes affects many vertebrate species, including birds. Listeria ivanovii, a second pathogenic species of the genus, is specific for ruminants. Our current view of the pathophysiology of listeriosis derives largely from studies with the mouse infection model. Pathogenic listeriae enter the host primarily through the intestine. The liver is thought to be their first target organ after intestinal translocation. In the liver, listeriae actively multiply until the infection is controlled by a cell-mediated immune response. This initial, subclinical step of listeriosis is thought to be common due to the frequent presence of pathogenic L. monocytogenes in food. In normal indivuals, the continual exposure to listerial antigens probably contributes to the maintenance of anti-Listeria memory T cells. However, in debilitated and immunocompromised patients, the unrestricted proliferation of listeriae in the liver may result in prolonged low-level bacteremia, leading to invasion of the preferred secondary target organs (the brain and the gravid uterus) and to overt clinical disease. L. monocytogenes and L. ivanovii are facultative intracellular parasites able to survive in macrophages and to invade a variety of normally nonphagocytic cells, such as epithelial cells, hepatocytes, and endothelial cells. In all these cell types, pathogenic listeriae go through an intracellular life cycle involving early escape from the phagocytic vacuole, rapid intracytoplasmic multiplication, bacterially induced actin-based motility, and direct spread to neighboring cells, in which they reinitiate the cycle. In this way, listeriae disseminate in host tissues sheltered from the humoral arm of the immune system. Over the last 15 years, a number of virulence factors involved in key steps of this intracellular life cycle have been identified. This review describes in detail the molecular determinants of Listeria virulence and their mechanism of action and summarizes the current knowledge on the pathophysiology of listeriosis and the cell biology and host cell responses to Listeria infection. This article provides an updated perspective of the development of our understanding of Listeria pathogenesis from the first molecular genetic analyses of virulence mechanisms reported in 1985 until the start of the genomic era of Listeria research

    High prevalence of colonisation with carbapenem-resistant Enterobacteriaceae among patients admitted to Vietnamese hospitals : Risk factors and burden of disease

    No full text
    Background Carbapenem-resistant Enterobacteriaceae (CRE) is an increasing problem worldwide, but particularly problematic in low- and middle-income countries (LMIC) due to limitations of resources for surveillance of CRE and infection prevention and control (IPC). Methods A point prevalence survey (PPS) with screening for colonisation with CRE was conducted on 2233 patients admitted to neonatal, paediatric and adult care at 12 Vietnamese hospitals located in northern, central and southern Vietnam during 2017 and 2018. CRE colonisation was determined by culturing of faecal specimens on selective agar for CRE. Risk factors for CRE colonisation were evaluated. A CRE admission and discharge screening sub-study was conducted among one of the most vulnerable patient groups; infants treated at an 80-bed Neonatal ICU from March throughout June 2017 to assess CRE acquisition, hospital-acquired infection (HAI) and treatment outcome. Results A total of 1165 (52%) patients were colonised with CRE, most commonly Klebsiella pneumoniae (n=805), Escherichia coli (n=682) and Enterobacter spp. (n=61). Duration of hospital stay, HAI and treatment with a carbapenem were independent risk factors for CRE colonisation. The PPS showed that the prevalence of CRE colonisation increased on average 4.2 % per day and mean CRE colonisation rates increased from 13% on the day of admission to 89% at day 15 of hospital stay. At the NICU CRE colonisation increased from 32% at admission to 87% at discharge, mortality was significantly associated (OR 5‱5, P &lt; 0‱01) with CRE colonisation and HAI on admission. Conclusion These data indicate that there is an epidemic spread of CRE in Vietnamese hospitals with rapid transmission to hospitalised patients.Funding agencies: Karolinska Institute, Solna, Sweden; Linkoping University, County of Ostergotland, Sweden; Swedish Foundation for International Cooperation in Research and Higher Education, STINT, Stockholm, Sweden; European Union, Marie Slodowska Curie Grants; ReAct, Up</p
    corecore