162 research outputs found

    A class of Calogero type reductions of free motion on a simple Lie group

    Full text link
    The reductions of the free geodesic motion on a non-compact simple Lie group G based on the G+×G+G_+ \times G_+ symmetry given by left- and right multiplications for a maximal compact subgroup G+⊂GG_+ \subset G are investigated. At generic values of the momentum map this leads to (new) spin Calogero type models. At some special values the `spin' degrees of freedom are absent and we obtain the standard BCnBC_n Sutherland model with three independent coupling constants from SU(n+1,n) and from SU(n,n). This generalization of the Olshanetsky-Perelomov derivation of the BCnBC_n model with two independent coupling constants from the geodesics on G/G+G/G_+ with G=SU(n+1,n) relies on fixing the right-handed momentum to a non-zero character of G+G_+. The reductions considered permit further generalizations and work at the quantized level, too, for non-compact as well as for compact G.Comment: shortened to 13 pages in v2 on request of Lett. Math. Phys. and corrected some spelling error

    Electron transport through antidot superlattices in Si/SiGeSi/SiGe heterostructures: new magnetoresistance resonances in lattices with large diameter antidots

    Get PDF
    In the present work we have investigated the transport properties in a number of Si/SiGe samples with square antidot lattices of different periods. In samples with lattice periods equal to 700 nm and 850 nm we have observed the conventional low-field commensurability magnetoresistance peaks consistent with the previous observations in GaAs/AlGaAs and Si/SiGe samples with antidot lattices. In samples with a 600 nm lattice period a new series of well-developed magnetoresistance oscillations has been found beyond the last commensurability peak which are supposed to originate from periodic skipping orbits encircling an antidot with a particular number of bounds.Comment: To appear in EuroPhys. Let

    Transport properties of a 3D topological insulator based on a strained high mobility HgTe film

    Get PDF
    We investigated the magnetotransport properties of strained, 80nm thick HgTe layers featuring a high mobility of mu =4x10^5 cm^2/Vs. By means of a top gate the Fermi-energy is tuned from the valence band through the Dirac type surface states into the conduction band. Magnetotransport measurements allow to disentangle the different contributions of conduction band electrons, holes and Dirac electrons to the conductivity. The results are are in line with previous claims that strained HgTe is a topological insulator with a bulk gap of ~15meV and gapless surface states.Comment: 11 pages (4 pages of main text, 6 pages of supplemental materials), 8 figure

    Unconventional Hall effect near charge neutrality point in a two-dimensional electron-hole system

    Get PDF
    The transport properties of the two-dimensional system in HgTe-based quantum wells containing simultaneously electrons and holes of low densities are examined. The Hall resistance, as a function of perpendicular magnetic field, reveals an unconventional behavior, different from the classical N-shaped dependence typical for bipolar systems with electron-hole asymmetry. The quantum features of magnetotransport are explained by means of numerical calculation of the Landau level spectrum based on the Kane Hamiltonian. The origin of the quantum Hall plateau {\sigma}xy = 0 near the charge neutrality point is attributed to special features of Landau quantization in our system.Comment: 8 pages, 7 figure

    On frequencies of small oscillations of some dynamical systems associated with root systems

    Full text link
    In the paper by F. Calogero and author [Commun. Math. Phys. 59 (1978) 109-116] the formula for frequencies of small oscillations of the Sutherland system (AlA_l case) was found. In present note the generalization of this formula for the case of arbitrary root system is given.Comment: arxiv version is already officia
    • …
    corecore