708 research outputs found

    Overexpression of the <em>AtSHI</em> gene in poinsettia, <em>Euphorbia pulcherrima</em>, results in compact plants

    Get PDF
    Euphorbia pulcherrima, poinsettia, is a non-food and non-feed vegetatively propagated ornamental plant. Appropriate plant height is one of the most important traits in poinsettia production and is commonly achieved by application of chemical growth retardants. To produce compact poinsettia plants with desirable height and reduce the utilization of growth retardants, the Arabidopsis SHORT INTERNODE (AtSHI) gene controlled by the cauliflower mosaic virus 35S promoter was introduced into poinsettia by Agrobacterium-mediated transformation. Three independent transgenic lines were produced and stable integration of transgene was verified by PCR and Southern blot analysis. Reduced plant height (21-52%) and internode lengths (31-49%) were obtained in the transgenic lines compared to control plants. This correlates positively with the AtSHI transcript levels, with the highest levels in the most dwarfed transgenic line (TL1). The indole-3-acetic acid (IAA) content appeared lower (11-31% reduction) in the transgenic lines compared to the wild type (WT) controls, with the lowest level (31% reduction) in TL1. Total internode numbers, bract numbers and bract area were significantly reduced in all transgenic lines in comparison with the WT controls. Only TL1 showed significantly lower plant diameter, total leaf area and total dry weight, whereas none of the AtSHI expressing lines showed altered timing of flower initiation, cyathia abscission or bract necrosis. This study demonstrated that introduction of the AtSHI gene into poinsettia by genetic engineering can be an effective approach in controlling plant height without negatively affecting flowering time. This can help to reduce or avoid the use of toxic growth retardants of environmental and human health concern. This is the first report that AtSHI gene was overexpressed in poinsettia and transgenic poinsettia plants with compact growth were produced

    Haemoglobin mass and running time trial performance after recombinant human erythropoietin administration in trained men

    Get PDF
    &lt;p&gt;Recombinant human erythropoietin (rHuEpo) increases haemoglobin mass (Hbmass) and maximal oxygen uptake (v˙ O2 max).&lt;/p&gt; &lt;p&gt;Purpose: This study defined the time course of changes in Hbmass, v˙ O2 max as well as running time trial performance following 4 weeks of rHuEpo administration to determine whether the laboratory observations would translate into actual improvements in running performance in the field.&lt;/p&gt; &lt;p&gt;Methods: 19 trained men received rHuEpo injections of 50 IUNkg21 body mass every two days for 4 weeks. Hbmass was determined weekly using the optimized carbon monoxide rebreathing method until 4 weeks after administration. v˙ O2 max and 3,000 m time trial performance were measured pre, post administration and at the end of the study.&lt;/p&gt; &lt;p&gt;Results: Relative to baseline, running performance significantly improved by ,6% after administration (10:3061:07 min:sec vs. 11:0861:15 min:sec, p,0.001) and remained significantly enhanced by ,3% 4 weeks after administration (10:4661:13 min:sec, p,0.001), while v˙ O2 max was also significantly increased post administration (60.765.8 mLNmin21Nkg21 vs. 56.066.2 mLNmin21Nkg21, p,0.001) and remained significantly increased 4 weeks after rHuEpo (58.065.6 mLNmin21Nkg21, p = 0.021). Hbmass was significantly increased at the end of administration compared to baseline (15.261.5 gNkg21 vs. 12.761.2 gNkg21, p,0.001). The rate of decrease in Hbmass toward baseline values post rHuEpo was similar to that of the increase during administration (20.53 gNkg21Nwk21, 95% confidence interval (CI) (20.68, 20.38) vs. 0.54 gNkg21Nwk21, CI (0.46, 0.63)) but Hbmass was still significantly elevated 4 weeks after administration compared to baseline (13.761.1 gNkg21, p&#60;0.001).&lt;/p&gt; &lt;p&gt;Conclusion: Running performance was improved following 4 weeks of rHuEpo and remained elevated 4 weeks after administration compared to baseline. These field performance effects coincided with rHuEpo-induced elevated v˙ O2 max and Hbmass.&lt;/p&gt

    Flavonoid intakes inversely associate with COPD in smokers

    Get PDF
    Introduction: Higher flavonoid intakes are beneficially associated with pulmonary function parameters; however, their association with chronic obstructive pulmonary disease (COPD) is unknown. This study aimed to examine associations between intakes of 1) total flavonoids, 2) flavonoid subclasses and 3) major flavonoid compounds with incident COPD in participants from the Danish Diet, Cancer and Health study. Methods: This prospective cohort included 55 413 men and women without COPD, aged 50-65 years at recruitment. Habitual flavonoid intakes at baseline were estimated from a food frequency questionnaire using Phenol-Explorer. Danish nationwide registers were used to identify incident cases of COPD. Associations were modelled using restricted cubic splines within Cox proportional hazards models. Results: During 23 years of follow-up, 5557 participants were diagnosed with COPD. Of these, 4013 were current smokers, 1062 were former smokers and 482 were never-smokers. After multivariable adjustments, participants with the highest total flavonoid intakes had a 20 % lower risk of COPD than those with the lowest intakes (quintile 5 versus quintile 1: HR 0.80, 95% CI 0.74-0.87); a 6-22 % lower risk was observed for each flavonoid subclass. The inverse association between total flavonoid intake and COPD was present in both men and women but only in current smokers (HR 0.77, 95 % CI 0.70-0.84) and former smokers (HR 0.82, 95 % CI 0.69-0.97), not never-smokers. Furthermore, higher flavonoid intakes appeared to lessen, but not negate, the higher risk of COPD associated with smoking intensity. Conclusion: Dietary flavonoids may be important for partially mitigating the risk of smoking-related COPD. However, smoking cessation should remain the highest priority

    Ventilation history of Nordic Seas overflows during the last (de)glacial period revealed by species-specific benthic foraminiferal 14 C dates

    Get PDF
    Formation of deep water in the high-latitude North Atlantic is important for the global meridional ocean circulation, and its variability in the past may have played an important role in regional and global climate change. Here we study ocean circulation associated with the last (de)glacial period, using water-column radiocarbon age reconstructions in the Faroe-Shetland Channel, southeastern Norwegian Sea, and from the Iceland Basin, central North Atlantic. The presence of tephra layer Faroe Marine Ash Zone II, dated to ~26.7 ka, enables us to determine that the middepth (1179 m water depth) and shallow subsurface reservoir ages were ~1500 and 1100 14C years, respectively, older during the late glacial period compared to modern, suggesting substantial suppression of the overturning circulation in the Nordic Seas. During the late Last Glacial Maximum and the onset of deglaciation (~20–18 ka), Nordic Seas overflow was weak but active. During the early deglaciation (~17.5–14.5 ka), our data reveal large differences between 14C ventilation ages that are derived from dating different benthic foraminiferal species: Pyrgo and other miliolid species yield ventilation ages >6000 14C years, while all other species reveal ventilation ages <2000 14C years. These data either suggest subcentennial, regional, circulation changes or that miliolid-based 14C ages are biased due to taphonomic or vital processes. Implications of each interpretation are discussed. Regardless of this “enigma,” the onset of the Bølling-Allerød interstadial (14.5 ka) is clearly marked by an increase in middepth Nordic Seas ventilation and the renewal of a stronger overflow
    corecore