23,673 research outputs found
An analysis of I/O efficient order-statistic-based techniques for noise power estimation in the HRMS sky survey's operational system
Noise power estimation in the High-Resolution Microwave Survey (HRMS) sky survey element is considered as an example of a constant false alarm rate (CFAR) signal detection problem. Order-statistic-based noise power estimators for CFAR detection are considered in terms of required estimator accuracy and estimator dynamic range. By limiting the dynamic range of the value to be estimated, the performance of an order-statistic estimator can be achieved by simpler techniques requiring only a single pass of the data. Simple threshold-and-count techniques are examined, and it is shown how several parallel threshold-and-count estimation devices can be used to expand the dynamic range to meet HRMS system requirements with minimal hardware complexity. An input/output (I/O) efficient limited-precision order-statistic estimator with wide but limited dynamic range is also examined
Conditional expectations associated with quantum states
An extension of the conditional expectations (those under a given subalgebra
of events and not the simple ones under a single event) from the classical to
the quantum case is presented. In the classical case, the conditional
expectations always exist; in the quantum case, however, they exist only if a
certain weak compatibility criterion is satisfied. This compatibility criterion
was introduced among others in a recent paper by the author. Then,
state-independent conditional expectations and quantum Markov processes are
studied. A classical Markov process is a probability measure, together with a
system of random variables, satisfying the Markov property and can equivalently
be described by a system of Markovian kernels (often forming a semigroup). This
equivalence is partly extended to quantum probabilities. It is shown that a
dynamical (semi)group can be derived from a given system of quantum observables
satisfying the Markov property, and the group generators are studied. The
results are presented in the framework of Jordan operator algebras, and a very
general type of observables (including the usual real-valued observables or
self-adjoint operators) is considered.Comment: 10 pages, the original publication is available at http://www.aip.or
Frequency Dependent Specific Heat from Thermal Effusion in Spherical Geometry
We present a novel method of measuring the frequency dependent specific heat
at the glass transition applied to 5-polyphenyl-4-ether. The method employs
thermal waves effusing radially out from the surface of a spherical thermistor
that acts as both a heat generator and thermometer. It is a merit of the method
compared to planar effusion methods that the influence of the mechanical
boundary conditions are analytically known. This implies that it is the
longitudinal rather than the isobaric specific heat that is measured. As
another merit the thermal conductivity and specific heat can be found
independently. The method has highest sensitivity at a frequency where the
thermal diffusion length is comparable to the radius of the heat generator.
This limits in practise the frequency range to 2-3 decades. An account of the
3omega-technique used including higher order terms in the temperature
dependency of the thermistor and in the power generated is furthermore given.Comment: 17 pages, 15 figures, Substantially revised versio
Investigating the auroral electrojets with low altitude polar orbiting satellites
International audienceThree geomagnetic satellite missions currently provide high precision magnetic field measurements from low altitude polar orbiting spacecraft. We demonstrate how these data can be used to determine the intensity and location of the horizontal currents that flow in the ionosphere, predominantly in the auroral electrojets. First, we examine the results during a recent geomagnetic storm. The currents derived from two satellites at different altitudes are in very good agreement, which verifies good stability of the method. Further, a very high degree of correlation (correlation coefficients of 0.8?0.9) is observed between the amplitudes of the derived currents and the commonly used auroral electrojet indices based on magnetic measurements at ground. This points to the potential of defining an auroral activity index based on the satellite observations, which could be useful for space weather monitoring. A specific advantage of the satellite observations over the ground-based magnetic measurements is their coverage of the Southern Hemisphere, as well as the Northern. We utilize this in an investigation of the ionospheric currents observed in both polar regions during a period of unusually steady interplanetary magnetic field with a large negative Y-component. A pronounced asymmetry is found between the currents in the two hemispheres, which indicates real inter-hemispheric differences beyond the mirror-asymmetry between hemispheres that earlier studies have revealed. The method is also applied to another event for which the combined measurements of the three satellites provide a comprehensive view of the current systems. The analysis hereof reveals some surprising results concerning the connection between solar wind driver and the resulting ionospheric currents. Specifically, preconditioning of the magnetosphere (history of the interplanetary magnetic field) is seen to play an important role, and in the winther hemisphere, it seems to be harder to drive currents on the nightside than on the dayside
Gamma-Ray Burst Sequences in Hardness Ratio-Peak Energy Plane
The narrowness of the distribution of the peak energy of
spectrum of gamma-ray bursts (GRBs) and the unification of GRB population are
great puzzles yet to be solved. We investigate the two puzzles based on the
global spectral behaviors of different GRB population in the
plane (HR the spectral hardness ratio) with BATSE and HETE-2 observations. It
is found that long GRBs and XRFs observed by HETE-2 seem to follow the same
sequence in the plane, with the XRFs at the low end of this
sequence. The long and short GRBs observed by BATSE follow significantly
different sequences in the plane, with most of the short GRBs
having a larger hardness ratio than the long GRBs at a given .
These results indicate that the global spectral behaviors of the long GRB
sample and the XRF sample are similar, while that of short GRBs is different.
The short GRBs seem to be a unique subclass of GRBs, and they are not the
higher energy extension of the long GRBs (abridged).Comment: 9 pages, 3 figure
Noncommutative geometry, topology and the standard model vacuum
As a ramification of a motivational discussion for previous joint work, in
which equations of motion for the finite spectral action of the Standard Model
were derived, we provide a new analysis of the results of the calculations
herein, switching from the perspective of Spectral triple to that of Fredholm
module and thus from the analogy with Riemannian geometry to the pre-metrical
structure of the Noncommutative geometry. Using a suggested Noncommutative
version of Morse theory together with algebraic -theory to analyse the
vacuum solutions, the first two summands of the algebra for the finite triple
of the Standard Model arise up to Morita equivalence. We also demonstrate a new
vacuum solution whose features are compatible with the physical mass matrix.Comment: 24 page
The Central Regions of M31 in the 3 - 5 micron Wavelength Region
Images obtained with NIRI on the Gemini North telescope are used to
investigate the photometric properties of the central regions of M31 in the 3 -
5 micron wavelength range. The light distribution in the central arcsecond
differs from what is seen in the near-infrared in the sense that the difference
in peak brigh tness between P1 and P2 is larger in M' than in K'; no obvious
signature of P3 is dete cted in M'. These results can be explained if there is
a source of emission that contributes ~ 20% of the peak M' light of P1 and has
an effective temperature of no more than a few hundred K that is located
between P1 and P2. Based on the red K-M' color of this source, it is suggested
that the emission originates in a circumstellar dust shell surrounding a single
bright AGB star. A similar bright source that is ~ 8 arcsec from the center of
the galaxy is also detected in M'. Finally, the (L', K-L') color-magnitude
diagram of unblended stars shows a domin ant AGB population with photometric
characteristics that are similar to those of the most luminous M giants in the
Galactic bulge.Comment: To appear in the Astronomical Journa
Are All Static Black Hole Solutions Spherically Symmetric?
The static black hole solutions to the Einstein-Maxwell equations are all
spherically symmetric, as are many of the recently discovered black hole
solutions in theories of gravity coupled to other forms of matter. However,
counterexamples demonstrating that static black holes need not be spherically
symmetric exist in theories, such as the standard electroweak model, with
electrically charged massive vector fields. In such theories, a magnetically
charged Reissner-Nordstrom solution with sufficiently small horizon radius is
unstable against the development of a nonzero vector field outside the horizon.
General arguments show that, for generic values of the magnetic charge, this
field cannot be spherically symmetric. Explicit construction of the solution
shows that it in fact has no rotational symmetry at all.Comment: 6 pages, plain TeX. Submitted to GRF Essay Competitio
WATER REPELLENT RENDERINGS FOR THE DAMP-PROOFING OF MONUMENTS
The global transitional justice tool kit—involving the use of criminal prosecutions, amnesties, and other mechanisms to address past human rights abuse—has become a primary means for thwarting future human rights violations and consolidating democracy. Nevertheless, evidence on the consequences of transitional justice remains mixed and amenable to contradictory interpretations. Existing studies fail to adequately address issues of selection, the difference between short- and long-term effects of transitional justice mechanisms, and qualitative and quantitative differences in state practices. This article uses a new database of transitional justice mechanisms to address these concerns and test propositions from realist, constructivist, and holistic approaches to this set of policy issues. We find, among other things, that prosecutions increase physical integrity protections, while amnesties increase the protection of civil and political rights. Our analysis suggests that different transnational justice policies each play a potentially positive, but distinct, role in new democracies and in decreasing violations of human rights
Supercooled Liquid Dynamics Studied via Shear-Mechanical Spectroscopy
We report dynamical shear-modulus measurements for five glass-forming liquids
(pentaphenyl trimethyl trisiloxane, diethyl phthalate, dibutyl phthalate,
1,2-propanediol, and m-touluidine). The shear-mechanical spectra are obtained
by the piezoelectric shear-modulus gauge (PSG) method. This technique allows
one to measure the shear modulus ( Pa) of the liquid within a
frequency range from 1 mHz to 10 kHz. We analyze the frequency-dependent
response functions to investigate whether time-temperature superposition (TTS)
is obeyed. We also study the shear-modulus loss-peak position and its
high-frequency part. It has been suggested that when TTS applies, the
high-frequency side of the imaginary part of the dielectric response decreases
like a power law of the frequency with an exponent -1/2. This conjecture is
analyzed on the basis of the shear mechanical data. We find that TTS is obeyed
for pentaphenyl trimethyl trisiloxane and in 1,2-propanediol while in the
remaining liquids evidence of a mechanical process is found. Although
the the high-frequency power law behavior of the shear-loss
may approach a limiting value of when lowering the temperature, we
find that the exponent lies systematically above this value (around 0.4). For
the two liquids without beta relaxation (pentaphenyl trimethyl trisiloxane and
1,2-propanediol) we also test the shoving model prediction, according to which
the the relaxation-time activation energy is proportional to the instantaneous
shear modulus. We find that the data are well described by this model.Comment: 7 pages, 6 figure
- …