21,318 research outputs found

    Asynchronous displays for multi-UV search tasks

    Get PDF
    Synchronous video has long been the preferred mode for controlling remote robots with other modes such as asynchronous control only used when unavoidable as in the case of interplanetary robotics. We identify two basic problems for controlling multiple robots using synchronous displays: operator overload and information fusion. Synchronous displays from multiple robots can easily overwhelm an operator who must search video for targets. If targets are plentiful, the operator will likely miss targets that enter and leave unattended views while dealing with others that were noticed. The related fusion problem arises because robots' multiple fields of view may overlap forcing the operator to reconcile different views from different perspectives and form an awareness of the environment by "piecing them together". We have conducted a series of experiments investigating the suitability of asynchronous displays for multi-UV search. Our first experiments involved static panoramas in which operators selected locations at which robots halted and panned their camera to capture a record of what could be seen from that location. A subsequent experiment investigated the hypothesis that the relative performance of the panoramic display would improve as the number of robots was increased causing greater overload and fusion problems. In a subsequent Image Queue system we used automated path planning and also automated the selection of imagery for presentation by choosing a greedy selection of non-overlapping views. A fourth set of experiments used the SUAVE display, an asynchronous variant of the picture-in-picture technique for video from multiple UAVs. The panoramic displays which addressed only the overload problem led to performance similar to synchronous video while the Image Queue and SUAVE displays which addressed fusion as well led to improved performance on a number of measures. In this paper we will review our experiences in designing and testing asynchronous displays and discuss challenges to their use including tracking dynamic targets. © 2012 by the American Institute of Aeronautics and Astronautics, Inc

    The NASA SETI sky survey: Recent developments

    Get PDF
    NASA's Search for Extraterrestrial Intelligence (SETI) project utilizes two complementary search strategies: a sky survey and a targeted search. The SETI team at the Jet Propulsion Laboratory (JPL) in Pasadena, California, has primary responsibility to develop and carry out the sky survey part. Described here is progress that has been made developing the major elements of the survey including a 2-million channel wideband spectrum analyzer system that is being designed and constructed by JPL for the Deep Space Network (DSN). The system will be a multiuser instrument; it will serve as a prototype for the SETI sky survey processor. This prototype system will be used to test the signal detection and observational strategies on DSN antennas in the near future

    SIGAME simulations of the [CII], [OI] and [OIII] line emission from star forming galaxies at z ~ 6

    Get PDF
    Of the almost 40 star forming galaxies at z>~5 (not counting QSOs) observed in [CII] to date, nearly half are either very faint in [CII], or not detected at all, and fall well below expectations based on locally derived relations between star formation rate (SFR) and [CII] luminosity. Combining cosmological zoom simulations of galaxies with SIGAME (SImulator of GAlaxy Millimeter/submillimeter Emission) we have modeled the multi-phased interstellar medium (ISM) and its emission in [CII], [OI] and [OIII], from 30 main sequence galaxies at z~6 with star formation rates ~3-23Msun/yr, stellar masses ~(0.7-8)x10^9Msun, and metallicities ~(0.1-0.4)xZsun. The simulations are able to reproduce the aforementioned [CII]-faintness at z>5, match two of the three existing z>~5 detections of [OIII], and are furthermore roughly consistent with the [OI] and [OIII] luminosity relations with SFR observed for local starburst galaxies. We find that the [CII] emission is dominated by the diffuse ionized gas phase and molecular clouds, which on average contribute ~66% and ~27%, respectively. The molecular gas, which constitutes only ~10% of the total gas mass is thus a more efficient emitter of [CII] than the ionized gas making up ~85% of the total gas mass. A principal component analysis shows that the [CII] luminosity correlates with the star formation activity as well as average metallicity. The low metallicities of our simulations together with their low molecular gas mass fractions can account for their [CII]-faintness, and we suggest these factors may also be responsible for the [CII]-faint normal galaxies observed at these early epochs.Comment: 24 pages, 14 figures. Accepted for publication in the Astrophysical Journa

    The table mountain 8-mm-wavelength interferometer

    Get PDF
    The system components, performance, and calibration of two element radio interferometer operating at 8.33 mm wavelength are discussed. The interferometer employs a 5.5 m and a 3 m diameter antenna on an east-west baseline of 60 or 120 m, yielding fringe spacings at transit of 28 or 14 in. respectively. The broad intermediate frequency bandpass of 100 to 350 MHz and the system noise temperature of 500 K provide high sensitivity for the measurement of continuum sources. The interferometer has been used for high resolution studies of the planets and the Sun, and it is currently being adapted to study solar flare emissions at high spatial and time resolution

    Automatic Detection of Seizures with Applications

    Get PDF
    There are an estimated two million people with epilepsy in the United States. Many of these people do not respond to anti-epileptic drug therapy. Two devices can be developed to assist in the treatment of epilepsy. The first is a microcomputer-based system designed to process massive amounts of electroencephalogram (EEG) data collected during long-term monitoring of patients for the purpose of diagnosing seizures, assessing the effectiveness of medical therapy, or selecting patients for epilepsy surgery. Such a device would select and display important EEG events. Currently many such events are missed. A second device could be implanted and would detect seizures and initiate therapy. Both of these devices require a reliable seizure detection algorithm. A new algorithm is described. It is believed to represent an improvement over existing seizure detection algorithms because better signal features were selected and better standardization methods were used

    Open charm scenarios

    Full text link
    We discuss possibilities of identifying open charm effects in direct production processes, and propose that direct evidence for the open charm effects can be found in e+e−→J/ψπ0e^+ e^-\to J/\psi\pi^0. A unique feature with this process is that the DD∗ˉ+c.c.D\bar{D^*}+c.c. open channel is located in a relatively isolated energy, i.e. ∼3.876\sim 3.876 GeV, which is sufficiently far away from the known charmonia ψ(3770)\psi(3770) and ψ(4040)\psi(4040). Due to the dominance of the isospin-0 component at the charmonium energy region, an enhanced model-independent cusp effect between the thresholds of D0D∗0ˉ+c.c.D^0\bar{D^{*0}}+c.c. and D+D∗−+c.c.D^+ D^{*-}+c.c. can be highlighted. An energy scan over this energy region in the e+e−e^+e^- annihilation reaction can help us to understand the nature of X(3900) recently observed by Belle Collaboration in e+e−→DDˉ+c.c.e^+ e^-\to D\bar{D}+c.c., and establish the open charm effects as an important non-perturbative mechanism in the charmonium energy region.Comment: 6 pages, Proceeding contribution to the Rutherford Centennial Conference, Aug. 8-12, 2011, Manchester, U.

    The Z Charmoniumlike Mesons

    Full text link
    A brief review of the experimental situation concerning the electrically-charged charmoniumlike meson candidates, Z−Z^-, is presented
    • …
    corecore