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An advanced algorithm, known as the “Comprehensive Inversion” (CI), is presented for the analysis of Swarm
measurements to generate a consistent set of Level-2 data products to be delivered by the Swarm “Satellite
Constellation Application and Research Facility” (SCARF) to the European Space Agency (ESA). This new
algorithm improves on a previously developed version in several ways, including the ability to process ground-
based observatory data, estimation of rotations describing the alignment of vector magnetometer measurements
with a known reference system, and the inclusion of ionospheric induction effects due to an a priori 3-dimensional
conductivity model. However, the most substantial improvements entail the application of a mechanism termed
“Selective Infinite Variance Weighting” (SIVW), which mitigates the effects of non-zero mean systematic noise
and allows for the exploitation of gradient information from the low-altitude Swarm satellite pair to determine
small-scale lithospheric fields, and an improvement in the treatment of attitude error due to noise in star-tracking
systems over previously established methods. The advanced CI algorithm is validated by applying it to synthetic
data from a full simulation of the Swarm mission, where it is found to significantly exceed all mandatory and
most target accuracy requirements.
Key words: Swarm, Earth’s magnetic field, comprehensive modeling, core, lithosphere, ionosphere, magneto-
sphere, electromagnetic induction.

1. Introduction
The European Space Agency (ESA) is scheduled to

launch the Swarm mission (Friis-Christensen et al., 2006)
in 2013, a constellation of three satellites to map the Earth’s
magnetic field to unprecedented accuracy. During its multi-
year lifetime, two low orbiting spacecraft will act as a mag-
netic gradiometer while a third at higher altitude monitors
the main and external fields at other local times. ESA
has established the Swarm “Satellite Constellation Appli-
cation and Research Facility” (SCARF) for the purposes
of generating derived Level-2 products from the single-
satellite Level-1b data. The “Comprehensive Inversion”
(CI) method of Sabaka and Olsen (2006) is a major process-
ing chain of SCARF, producing one version of each of five
defined items: core, lithospheric, magnetospheric, and iono-
spheric spherical harmonic expansions, time-varying when
appropriate, and Euler angles describing the alignment be-
tween the vector fluxgate magnetometer frame (VFM) sys-
tem and that of the Common Reference Frame (CRF) sys-
tem of the star imager.

The basic CI algorithm is presented in Sabaka and Olsen
(2006) where the magnetic fields from all major near-Earth
current sources are parameterized and then co-estimated
to obtain optimal field separation. This co-estimation ap-
proach is the key to the superior results obtained because
it eliminates ambiguities between parameters spaces. Tech-
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nically, the basic CI algorithm is an iterative Gauss-Newton
(GN) least-squares estimator (Seber and Wild, 2003), which
derives the model parameters from Swarm vector magne-
tometer measurements. While its application to the Swarm
E2E simulator (Sabaka and Olsen, 2006) showed promis-
ing performance in field recoverability, it still lacked several
features that would render it a truly competent algorithm
for the generation of actual Level-2 products. For instance,
the basic algorithm did not allow for surface measurements
such as observatory hourly-means (OHM) data, which are
known to greatly enhance field separation. Estimation of
the rotation between the VFM and CRF system for vector
measurements mentioned above was not included in the ba-
sic algorithm. The a priori conductivity model assumed
for ionospheric induction was 1-dimensional (1D) rather
than 3-dimensional (3D) in its variation. Finally, the formal
treatment of measurement and theory errors was very prim-
itive and not considered versatile enough for actual mission
application.

In this paper an attempt will be made to remedy the
aforementioned inadequacies of the basic algorithm by de-
veloping an advanced CI algorithm. While this new algo-
rithm now admits the OHM data, estimates the Euler angles
describing the VFM to CRF rotations, and includes iono-
spheric induction due to 3D conductivity structure, its great-
est advancement is in the area of formal error treatment.
Here a methodology, termed “Selective Infinite Variance
Weighting” (SIVW), is developed to handle non-zero mean
error due to, for instance, theory inadequacies through the
use of bias estimation which exploits Signal-to-Noise ratio
(SNR) levels in different data subsets in order to extract the
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best models. In addition, the methodology of Holme and
Bloxham (1995, 1996) and Holme (2000) to account for at-
titude error present in vector magnetometer measurements
due to star tracker instabilities is revised in order to improve
parameter estimates in the CI algorithm. The entire error
treatment mechanism is then placed in the context of robust
estimation by applying a Huber weighting scheme to mit-
igate the effects of outliers (Constable, 1988; Walker and
Jackson, 2000; Olsen, 2002).

The structure of the paper is as follows: a brief overview
of the basic CI algorithm will be presented in Section 2,
followed by the development of SIVW in Section 3. In
Section 4 the improved attitude error framework will be
derived, followed by the development of the advanced CI
algorithm in Section 5. The results of the application of
the advanced algorithm to synthetic data from a mission
simulation, known as “Version-2” (V2) (Olsen et al., 2013),
and a discussion are in Section 7, followed by conclusions
in Section 8. Finally, Appendices A and B are provided
that contain some technical information and derivations of
formulae presented in Sections 4 and 5, respectively.

2. Overview of the Basic CI Algorithm
The basic CI algorithm essentially employs the same

field source parameterizations as the CM4 model of Sabaka
et al. (2004), except for the magnetosphere and its asso-
ciated induced field. These latter fields were rather dis-
cretized in contiguous bins through time and considered
static within each bin. The magnetospheric and associated
induced fields are modeled independently with the intent of
discovering something of the underlying conductivity struc-
ture in Earth’s outer shell. These overall parameterizations
have been presented in Sabaka and Olsen (2006) where spe-
cific details may be found. However, a synopsis of this pa-
rameterization is given in Table 1, where the spherical har-
monic (SH) expansions begin at degree 1 and are truncated
at maximum degree/order Nmax/Mmax.

Because the induced field associated with the magneto-
sphere is modeled as an internal field to full degree/order 3,
it can mimic the internal core field as its bin duration de-
creases. As a consequence, separation of induced fields at
periods longer than, say, a few months from rapid core field
changes is not possible. This happens even though the in-
duced field is expressed in dipole SH functions while the
core is in geographic. This means that co-linearity poten-
tially exists between the parameters of these two fields. To
alleviate this, the basic CI algorithm employs equality con-
straints that force point-wise orthogonality over the mea-
surement times between any linear functionals of the core
and induced SH parameters. This will be derived again in
this paper for clarity. Let

ζc(r, t) = ���T
c (r)pc(t) = ���T

c (r)Pcbc(t), (1)

ζi(r, t) = ���T
i (r)pi(t) = ���T

i (r)Pibi(t), (2)

where the subscript “c” and “i” indicate core or induced
fields, respectively, and ζ(t, r) is the linear functional at
time t and position r, ���(r) is the SH linear mapping at
position r, p(t) is the vector of SH coefficients at time t , P is
the matrix of temporal coefficients for each SH coefficient

such that (P)i j is the j-th temporal coefficient for the i-
th SH coefficient, and b(t) is the vector of temporal basis
functions at time t . Specifically, the first element of bc(t)
is a one (for the static term) followed by a series of B-
spline terms defined over the time domain of the model,
while bi(t) is of length Nb (the number of time bins for the
induced field) with a one in the position of the bin where t
resides and zeros elsewhere. The objective is to make the
following summation vanish over the set of measurement
times

{
t1, . . . , tNm

}
〈ζc(r, t), ζi(r, t)〉 =

Nm∑
k=1

ζc(r, tk)ζi(r, tk),

= ���T
c (r)Pc

(
Nm∑

k=1

bc(tk)bT
i (tk)

)
PT

i ���i(r),

= ���T
c (r)PcBcBT

i PT
i ���i(r),

= ���T
c (r)PcGPT

i ���i(r), (3)

where Bc = [
bc(t1) . . . bc(tNm )

]
, Bi = [

bi(t1) . . . bi(tNm )
]
,

and G = BcBT
i . This leads to the desired condition

GPT
i = 0. (4)

A more convenient form is realized by stacking the Ni

columns of PT
i (or the Ni rows of Pi) to make a vector ιιι,

which itself is a sub-vector of the parameter vector for the
entire model x, so that

Ḡx = 0. (5)

If bc(t) is of length Nc, then Ḡ is a sparse matrix containing
the appropriate pattern of G such that its Nc·Ni rows enforce
a like number of constraints specified in Eq. (4) when multi-
plying x. Therefore, it is Eq. (5) that is used to constrain the
least-squares solution so that the induced magnetospheric
field is subjugated to the core field to be point-wise orthog-
onal to it over the measurement times. Because the core
spline basis is broad-scale in time, this means that ιιι will
reflect more high-frequency behavior in the internal field,
which is reasonable for much of the induced effects.

The result is that the basic CI algorithm solves the follow-
ing least-squares problem with linear equality constraints
(LSLE) at the k-th GN step (LSLE-GN)

LSLE-GN



min			xk

∣∣L−1 (			dk − Ak			xk)
∣∣2
2

+
Nq∑
j=1

λ j

∣∣∣F−1
j

(
x′

j − xk − 			xk
)∣∣∣2

2

subject to : Ḡ			xk = −Ḡxk

xk+1 = xk + 			xk

,

(6)

where | · |2 is the �2 norm, 			dk ≡ 			d(xk) = d − a(xk)

are the residuals of the data vector d with respect to the
non-linear model vector a(xk) evaluated at xk , Ak ≡ A(xk)

is the Jacobian of the model vector evaluated at xk , 			xk

are the adjustments to the current parameter vector xk , L is
the square-root factor of the data noise covariance matrix
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Table 1. The basic CI source parameterization (Sabaka and Olsen, 2006).

Field Source Description

Core field
Spatial: geographic SH Nmax = 20

Temporal: order 4 splines, 2.5 year knot spacing

Lithospheric Field Spatial: geographic SH Nmax = 120

Magnetospherc/Induced field

Magnetospheric field
Spatial: dipole SH Nmax = 3, Mmax = 1

Temporal: discretized in 1 hour bins

Induced field
Spatial: dipole SH Nmax = 3, Mmax = 3

Temporal: discretized in 1 hour bins

Ionospheric field

Spatial: quasi-dipole frame, underlying dipole SH Nmax = 60, Mmax = 12

Temporal: annual, semi-annual, 24,12, 8, and 6 hour periodicities plus induction

via a priori 1D conductivity model

C = LLT, and F j is the square-root factor of the j-th
a priori covariance matrix P−1

j = F j FT
j that, along with

the Lagrange multiplier λ j , specifies the deviation of the
solution from the preferred a priori model vector x′

j . The

solution to LSLE-GN, denoted 	̃		xk , may be found through
Lagrange multiplier theory (Toutenburg, 1982; Golub and
van Loan, 1989; Bertsekas, 1999) to be

	̃		xk = 			xk − E−1
k ḠT

(
ḠE−1

k ḠT
)−1

Ḡ
(

xk + 			xk

)
, (7)

where Ek = AT
k C−1Ak + ∑Nq

j=1 λ j P j , and 			xk is the un-
constrained solution given by

			xk = E−1
k

[
AT

k C−1			dk +
Nq∑
j=1

λ j P j
(
x′

j − xk
)]

. (8)

Note that only the linear LSLE-GN was discussed in Sabaka
and Olsen (2006). In practice, the Nq quadratic norms in
Eq. (6) are smoothing terms whose preferred solutions are
zero, that is, x′

j = 0. These smoothing norms affect the
secular variation of the core field, conductivity structure
of the ionospheric E-region, polar gaps, etc., and will be
discussed briefly in Section 5.4.

What is not included in the basic CI is a mechanism to
exploit the enhanced lithospheric SNR in the differences of
the vector measurements made by the Swarm low satellite
pair. It is more complicated than simply using only the low
pair vector differences to make models since the comple-
mentary data set (the low pair vector sums) is needed in
order to resolve other field constituents. In the next section
such a mechanism is indeed developed. The application of
this mechanism to Swarm will be discussed in Section 5.

3. Selective Infinite Variance Weighting
The near-Earth magnetic field is a highly dynamic sys-

tem containing signals that vary over a large range of spatial
and temporal scales. Even a constellation like Swarm can-
not completely decouple all of the space and time modes.
A prominent example is the mis-modeling of time-varying
external fields which can manifest itself as spurious static
structure, for instance, in the lithospheric field. While this
structure may be spatially broad-scale, it can vary rapidly
in time and represents a systematic noise bias that can con-
taminate the nominal estimate of the lithospheric field. Dif-
ferent philosophies exist on how to enhance the recovery

of signals of interest, like the lithosphere, while mitigating
the effects of unwanted or contaminating signals in the es-
timation procedure. Several recent models have employed
direct data selection techniques to derive good descriptions
of core and crustal fields (Maus et al., 2007, 2008; Thom-
son and Lesur, 2007; Lesur et al., 2008; Olsen et al., 2011).
The “Comprehensive Modelling” (CM) approach (Sabaka
et al., 2002, 2004) has not generally relied upon this prac-
tice, with the exception of gross outliers, etc., but rather has
focused on using as much data as possible to ensure a stable
co-estimation of parameters from all sources. Comparison
of the CMs with these models, however, has revealed effects
of contamination, particularly of ionospheric “leakage” into
lithospheric fields.

The Swarm constellation offers the ability of taking dif-
ferences between the vector magnetometer measurements
of the satellite low pair, which effectively eliminates most
of the broad-scale external contamination, thus leading to a
high SNR of the crustal field signal. However, the comple-
mentary data set, i.e., the summation of the vector magne-
tometer measurements of the satellite low pair, is necessary
for a full co-estimation of the other field constituents, but
it has a much lower SNR for its lithospheric field because
it suffers from the aforementioned systematic noise bias.
With this in mind, a more sophisticated error treatment will
be required of the CI models in order to exploit the high
SNR in one data set while limiting damage done by retain-
ing low SNR data. The SIVW mechanism is now developed
by first showing its ability to eliminate bias from system-
atic noise of a particularly common form that would oth-
erwise contaminate estimates if treated in traditional ways,
and secondly, how to combine this property with selection
of data subsets that exhibit different SNRs for different pa-
rameter sets in order to obtain optimal solutions.
3.1 Mitigating biases

This challenge can be stated mathematically by how best
to handle additive systematic error terms so as to not bias
the estimation of signals of interest. The name “systematic”
is used here to describe a vector error term that has the
form z = By, where B is a matrix having more rows than
columns and y is a vector of Gaussian random errors having
a mean vector µµµ and covariance matrix Q, indicated by
y ∼ N (µµµ, Q). Thus, z represents noise that cannot be
reduced to arbitrary levels by repeated experiments because
it has a non-zero mean, but can be eliminated in certain
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subspaces due to the fact that q = dim (z) > p = dim (y).
Consider the following model

d = Ax + ννν, (9)

= (
A B

) (
x
y

)
+ ηηη, (10)

in which a vector of parameters of interest x are related to
a vector of measurements d through a linear operator A in
the presence of an additive error term ννν = z +ηηη, where z is
the systemic error defined previously and ηηη ∼ N (0, C) is a
random error independent of z such that ννν ∼ N (Bµµµ, C +
BQBT). If a zero-mean assumption is made about ννν, then
the data noise weight matrix will be given by

W = (
C + BQBT

)−1
, (11)

and the least-squares estimate of x will be

x̃ = x + (
ATWA

)−1
ATW (By + ηηη) , (12)

but this is a biased estimate since E [x̃ − x] =(
ATWA

)−1
ATWBµµµ, where E [·] is the expectation oper-

ator.
Now consider the case in which y is treated as determin-

istic rather than stochastic and is co-estimated with x giving(
x̃
ỹ

)
=

(
ATC−1A ATC−1B
BTC−1A BTC−1B

)−1 (
ATC−1d
BTC−1d

)
. (13)

The partitioned solution for x may be written as

x̃ = (
ATW∞A

)−1
ATW∞d, (14)

= x + (
ATW∞A

)−1
ATW∞ (By + ηηη) , (15)

= x + (
ATW∞A

)−1
ATW∞ηηη, (16)

where

W∞ = C−1 − C−1B
(
BTC−1B

)−1
BTC−1. (17)

Thus, W∞B = 0 and the estimate is now unbiased since
E [x̃ − x] = 0. In this case, y is treated as a vector of “nui-
sance” parameters that are co-estimated with the nominal
parameters x in order to absorb error biases. If Q is rewrit-
ten as Q = σ 2Q̄ and W in Eq. (11) is expanded by the
Sherman-Morrison-Woodbury formula (Toutenburg, 1982),
then

W∞ = lim
σ 2→∞

W, (18)

= lim
σ 2→∞

C−1−C−1B
(
σ−2Q̄−1+BTC−1B

)−1
BTC−1,

(19)

= C−1 − C−1B
(
BTC−1B

)−1
BTC−1, (20)

that is, it is the limit of W as the variance of the systematic
noise goes to infinity, and hence the name “infinite vari-
ance weighting”. Thus, the least-squares estimate of x in
Eq. (9) given by Eq. (14) with explicit use of W∞ given in
Eq. (17) is a form that will mitigate the effects of system-
atic errors like z (e.g., time-varying external field leakage

into the lithospheric field). However, because W∞ can be
large and dense, the least-squares estimates of x and y in
Eq. (10) given by Eq. (13), where y are treated as nuisance
parameters, yields the same solution for x while using the
simpler noise covariance matrix C and is the preferred form
used in the CI approach.

There are two interesting properties about the estimate
given in Eq. (14) that should be mentioned. First, there is
no need to actually specify Q, that is, the covariance of the
systematic noise term. The weight matrix W∞ gives zero
weights to the directions defined by the column space of B
rendering a specification of Q completely unnecessary. It is
also interesting to note that W∞ not only eliminates Bµµµ in
the mean, but also individual realizations of the systematic
error z.

The second property becomes apparent by first letting
C = LLT be the Cholesky factorization of C, which must
exist assuming C is full-rank. Now, rewrite Eq. (20) such
that

W∞ = L−T
[
I − L−1B

(
BTL−TL−1B

)−1
BTL−T

]
L−1,

(21)

= L−TUN UT
N L−1, (22)

= FTF, (23)

where UN is a matrix whose orthogonal columns span the
null-space of the columns of L−1B, and F = UT

N L−1. This
means that Eq. (14) is now the least-squares solution to

Fd = FAx + Fηηη, (24)

but this system consists of only q − p equations; the p-
dimensional subspace where the columns of B, and hence
z, reside has been eliminated. Therefore, the action of W∞
can also be interpreted as a selection mechanism that only
admits “data” that are not contaminated by z. Note that if
q = p, that is, if B is a square full-rank matrix, then the
entire data set is eliminated from consideration.
3.2 Subset selection

The idea of solving for sets of nominal and nuisance
parameters from different subsets of data depending upon
their SNRs in a hierarchal framework is the basis for the
“selective” part of the method. Consider again Eq. (10), but
now partition the data into two subsets and let x1 and x2 be
vectors of parameters of interest where x2 is related to the
data through the matrix B such that(

d1

d2

)
=

(
A1 B1

A2 B2

) (
x1

x2

)
+

(
ηηη1

ννν2

)
, (25)

where ννν2 = B2y + ηηη2 is systematic with independent ran-
dom errors y ∼ N (µµµ, Q), ηηη1 ∼ N (0, C1), and ηηη2 ∼
N (0, C2) such that ννν2 ∼ N (B2µµµ, C2+B2QBT

2 ). Taking the
infinite variance limit on Q to mitigate the bias in y leads to
the data weight matrix

W∞ =
(

C−1
1 0

0 C−1
2 − C−1

2 B2
(
BT

2 C−1
2 B2

)−1
BT

2 C−1
2

)
,

(26)
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which can be used in the usual weighted least-squares solu-
tion. However, this is completely equivalent to solving the
following system

(
d1

d2

)
=

(
A1 B1 0
A2 B2 B2

)  x1

x2

y

 +
(

ηηη1

ηηη2

)
, (27)

with data weight matrix

W =
(

C−1
1 0
0 C−1

2

)
. (28)

Solving Eq. (27) with Eq. (28) is preferable to solving
Eq. (25) with Eq. (26) because W is typically much less
dense than W∞.

A useful property may now be derived by performing
the following parameter transformation on the system in
Eq. (27) such that

(
d1

d2

)
=

(
A1 B1 0
A2 0 B2

)  I 0 0
0 I 0
0 I I

  x1

x2

y

+
(

ηηη1

ηηη2

)
, (29)

=
(

A1 B1 0
A2 0 B2

)  x1

x2

x2 + y

 +
(

ηηη1

ηηη2

)
, (30)

where I are appropriately dimensioned identity matrices.
Because the parameter transformation is full-rank, the least-
squares solution of Eq. (30) with Eq. (28) is equivalent to
that of Eq. (27) with Eq. (28) in the nominal parameters
x̃1 and x̃2, but is equal to the sum x̃2 + ỹ in the nuisance
parameters. The advantage of solving Eq. (30) over (27) is
that the Jacobian of the former is more sparse. Again, the
use of either Eq. (27) or (30) with the weight matrix defined
in Eq. (28) in the CI is preferable to the usual weighted
least-squares solution using the weight matrix defined in
Eq. (26).

Clearly a hierarchy of nominal/nuisance parameter com-
binations could be distributed over the observation equa-
tions in order to mitigate systematic errors. Obviously, in
extreme cases where a data subset is contaminated by such
errors in all parameters subsets, it would be wise to simply
eliminate that data.

4. Attitude Error
The observation equations relating spherical harmonic

coefficients in a local spherical system (North, East, Center
or NEC (Olsen et al., 2013)) to the VFM will rely upon co-
ordinate transformations provided by star-imagers (STRs).
As such, these transformations will be degraded by random
errors due to physical limitations of the STRs and should
therefore be accounted for in the error analysis of the esti-
mators. In a series of papers (Holme and Bloxham, 1995,
1996; Holme, 2000) a mechanism was developed in or-
der to account for these errors that will henceforth be re-
ferred to as “HB theory”. This theory has been used suc-
cessfully in such models as the Oersted Initial Field Model
(OIFM) (Olsen et al., 2000) and Comprehensive Model-
4 (CM4) (Sabaka et al., 2004) for instance. However, it
turns out that simplifying assumptions have been made in

the HB theory that render the forms used in these models
(equations (13) and (18) of Holme and Bloxham (1996))
less suitable for describing the actual attitude error encoun-
tered. While Holme and Bloxham (1996) provide a form
that is technically always applicable (their equation (20)),
the quantities involved are non-intuitive and require prior
knowledge of the eigen-structure of the attitude covariance;
something that is not obvious, even in isotropic error cases.
In this section an attempt is made to remedy the situation
by applying a slightly more generalized treatment to atti-
tude errors in the CI algorithm.
4.1 Covariance under general, finite rotations

Consider the case of a compound rotation matrix R rep-
resenting successive rotations about three normalized axes
n̂, û, and ŵ such that

R = Rn̂(χ)Rû(δ)Rŵ(λ), (31)

where a general, elemental rotation matrix describing a pos-
itive rotation of angle � about the axis ê is given by (Wertz
and Larson, 1999)

Rê(�) = cos �I + (1 − cos �)êêT − sin �Eê, (32)

and a general cross-product matrix Eu of u is given by

Eu = u× =
 0 −u3 u2

u3 0 −u1

−u2 u1 0

 , u =
 u1

u2

u3

 . (33)

The goal is then to derive the covariance matrix of a vec-
tor B2 due to random perturbations about finite, non-zero
angles of the rotation matrix R in Eq. (31) such that

B2 = RB1. (34)

This is derived in Appendix A and is given by

CB2 = EB2 ACaATET
B2

, (35)

where

A = (
n̂2 û2 ŵ2

)
, da =

 dχ

dδ

dλ

 , (36)

with the vector of random angular perturbations da ∼
N (0, Ca). The vectors n̂2, û2, and ŵ2 are the vectors n̂,
û, and ŵ rotated into reference frame “2”, respectively, as
will be shown in Appendix A.
4.2 Covariance under HB theory assumptions

The HB theory essentially considers the case of zero-
mean random perturbations about a set of orthogonal axes
n̂, û, and ŵ, which is to say χ = δ = λ = 0. This is
equivalent to having

A = (
n̂ û ŵ

)
, (37)

such that

AAT = n̂n̂T + ûûT + ŵŵT = I, (38)

and is shown in Appendix A to reduce to the various covari-
ance matrices derived in the HB theory.
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It turns out that the covariance matrix corresponding to
the “no equal variances” case in Eq. (A.24) of Appendix A
is a general expression that is always true and is equivalent
to setting the three rotation axes and corresponding angu-
lar variances equal to the eigenvectors and corresponding
eigenvalues, respectively, of the symmetric positive semi-
definite matrix ACaAT in Eq. (35). The “three variances
equal” case in Eq. (A.22) and “two variances equal” case in
Eq. (A.23) of Appendix A are true when either all three or
just two out of three eigenvalues are equal, respectively.
4.3 Inertial to Common Reference Frame transforma-

tions
The STR reference system, or in the case of multiple-

head STRs the CRF, is often constructed so that the Z-axis
points along the bore-sight direction in the case of a single
STR or some average direction in the case of the CRF while
the X and Y axes lie in the plane perpendicular to this, e.g.,
in the plane of a charged-coupling device (CCD) in the case
of a single STR. What is usually provided are rotations from
the CRF to some inertial reference system like J2000. This
coordinate system is right-handed with the X-axis directed
towards the mean vernal equinox at noon on January 1,
2000, and whose Z-axis points along the Earth’s rotation
axis in the northern hemisphere. This naturally appears to
be a compound rotation of the form

BCRF = RBJ2000, (39)

such that

R = Rẑ(χ)Rŷ(δ)Rẑ(λ), (40)

where δ and λ are the colatitude and longitude of the J2000
Z-axis in the CRF, and χ is the rotation around the bore-
sight axis. With this definition, the R matrix can be written
as

R =
 Cχ −Sχ 0

Sχ Cχ 0
0 0 1

  Cδ 0 Sδ

0 1 0
−Sδ 0 Cδ

  Cλ −Sλ 0
Sλ Cλ 0
0 0 1

 , (41)

=
 CχCδCλ − Sχ Sλ −CχCδ Sλ − SχCλ Cχ Sδ

SχCδCλ + Cχ Sλ −SχCδ Sλ + CχCλ Sχ Sδ

−SδCλ Sδ Sλ Cδ

 ,

(42)

where the notation “C[·]” and “S[·]” denote sin (·) and
cos (·), respectively. From Eq. (42) it can be seen that

χ = tan−1

(
R2,3

R1,3

)
, δ = cos−1 (R3,3), λ = tan−1

(
R3,2

−R3,1

)
.

(43)

The corresponding A matrix is then

A =
 0 −Sχ SδCχ

0 Cχ Sδ Sχ

1 0 Cδ

 . (44)

Although the rotation axes are normalized, they only form
an orthonormal set when δ = π/2.

Uncertainties in the STR or CRF are usually quoted in
terms of errors in the angles comprising the rotation matri-
ces, such as errors in bore-sight pointing angles δ and λ and

errors in rotation angles χ about bore-sights. If these angles
are finite, then one begins to see the pitfalls in using the HB
theory expressions because the columns of the matrix A in
Eq. (44) are rarely orthonormal. This means that one has
to compute the eigen-decompositon of ACaAT in order to
use the “no equal variance” or general formula of the HB
theory (equation (20) of Holme and Bloxham (1996)). If
two or all three of the eigenvalues are equal, then one can
use the more specialized HB formulas (equations (18) and
(13) of Holme and Bloxham (1996), respectively), but this
is also likely a very rare event. Consequently, while the HB
theory general formula is always available, it is very non-
intuitive to use as one must compute eigen-decompositions
to even use it. Alternatively, the general covariance formula
in Eq. (35) follows directly from the statements of error that
are presumed to be provided for the STR or CRF and is thus
very intuitive.
4.4 Application to CHAMP transformations

To test the accuracy of the attitude covariances derived
from the CI versus HB theory in realistic cases, they were
computed and compared with covariances generated via
Monte Carlo simulation for 3217 actual quaternions, and
corresponding BJ2000, describing the rotation in Eq. (39) for
a set of CHAMP satellite data used in the derivation of the
CHAOS-3 model (Olsen et al., 2010). Each quaternion was
first expressed as a rotation matrix in the form of Eq. (42)
and then the angles χ , δ, and λ were extracted via Eq. (43).
These angles were then perturbed by zero-mean Gaussian
noise and used in Eq. (39) to produce N = 1000 samples
of (BCRF) j , j = 1, . . . , N . Because these quaternions were
selected only during times when both heads of the dual-
head STR were in operation, the standard deviations of all
angular perturbations were set to σ = 10 arcsecs. The
Monte Carlo estimate of the covariance is then given by

CMC = 1

N − 1

N∑
j=1

(
BCRF − B̄CRF

)
j

(
BCRF − B̄CRF

)T
j
,

(45)

where

B̄CRF = 1

N

N∑
j=1

(BCRF) j . (46)

The covariances from CI, denoted CCI, were computed for
each case by using Eq. (35) with A from Eq. (44) and
Ca = σ 2I. For HB theory, they were computed for each
case using their isotropic attitude error formula (Holme and
Bloxham, 1996)

CHB = σ 2
(
B2

CRFI − BCRFBT
CRF

)
, (47)

where BCRF = |BCRF|. This formula was chosen because
it appears, for instance, that Holme (2000) would advocate
its use in this case. In both the CI and HB cases, BCRF was
computed from Eq. (39) using the actual values of R from
Eq. (42) and BJ2000.

The comparison is shown graphically in Fig. 1 where
there are three panels such that the top shows the six in-
dependent elements of CMC on the vertical axis for each
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of the 3217 CHAMP rotation cases on the horizontal axis,
but sorted by their cos δ value. Recall from Eq. (44) that
the columns of A become orthonormal when δ = π/2 or
cos δ = 0. The six matrix elements are in the order of
the first column, followed by the bottom two elements of
the second column, followed by the lower-right corner ele-
ment. The middle panel is the same except that the matrix is
now CHB − CMC, and the last panel is also the same except
the matrix is now CCI − CMC. The scales are equivalent
in all three panels. Clearly there is a high level of agree-
ment between CCI and CMC for all rotation cases, but much
less agreement between CHB and CMC, except in the vicin-
ity of cos δ = 0. While agreement would be expected near
cos δ = 0 in the isotropic case, it is not clear that agree-
ment would occur in the anisotropic case (σ 2

χ �= σ 2
δ �= σ 2

λ ),
even though A has orthonormal columns. The maximum
absolute deviation from CMC is 5.77 nT2 for CHB and it
occurs in element (2, 2) when cos δ = 0.99359. For CCI

this number is 0.35 nT2 and it also occurs in element (2, 2)

when cos δ = −0.99953. Figure 1 shows that many of the
CHB − CMC values are often larger than the corresponding
values of CMC, particularly in the (2, 2) elements (matrix el-
ement 4 on the vertical axis of Fig. 1). While the use of CHB

has proven beneficial in magnetic field modeling to date, the
use of CCI could be a significant improvement, especially as
models attempt to describe finer details of Earth’s magnetic
field.

5. Development of the Advanced CI Algorithm
An advanced CI algorithm will now be built upon the

foundation outlined in Section 2 with improvements from
SIVW in Section 3 and the revised treatment of vector mag-
netometer attitude errors in Section 4. The modified param-
eterization will be described as well as how Swarm gradi-
ent information is to be exploited for improved lithospheric
recovery which entails a more sophisticated error analysis
then was used in the basic algorithm.
5.1 Parameterization

The parameterization for the advanced algorithm is listed
in Table 2 and is similar to the basic algorithm in the core
field except for higher time resolving splines that are higher
in order and knot density. The lithosphere is now split into
two parameter types, “nominal” and “nuisance”, that will
be discussed in the next section. The magnetosphere is the
same as in the basic algorithm while the ionosphere is dif-
ferent in that its a priori conductivity model now has 3D
structure (Kuvshinov, 2011). If εεε(ω) and ιιι(ω) are the vec-
tors of SH coefficients for the inducing and induced iono-
spheric fields, respectively, at frequency ω, then the a priori
coupling via the conductivity model is manifested in the re-
lationship ιιι(ω) = Q(ω)εεε(ω), where Q(ω) is the coupling
matrix at frequency ω. In a 1D treatment, as in Sabaka et al
(2002, 2004) and Sabaka and Olsen (2006), Q(ω) is diago-
nal and square and its elements are only dependent upon SH
degree. In the full 3D treatment, Q(ω) is a dense, generally
rectangular matrix allowing for very complicated induced
structure to result from relatively smooth inducing struc-
ture. Therefore, the change from 1D to 3D comes from sim-
ply using a different set of Q(ω). In addition, toroidal mag-
netic fields due to meridional currents that exist within the

satellite sampling shells are also modeled in the advanced
CI algorithm. These follow the parameterization of CM4
(Sabaka et al., 2004). Finally, because OHM data are now
processed in the advanced algorithm, static vector biases
are now included in the parameter set for each observatory
in order to absorb effects such as local crustal anomalies
(Sabaka et al., 2002, 2004).

The truly new parameters are those that describe the mag-
netometer alignment, that is, the rotation of the vector mag-
netometer measurement BVFM in the VFM frame to CRF

BCRF = RCRF←VFMBVFM. (48)

For Swarm, this rotation is parameterized by a set of 3
positive counter-clockwise Euler angles of type (XY Z) for
each satellite such that (Olsen et al., 2013)

RCRF←VFM = Rẑ(γ )Rŷ(β)Rx̂(α),

=
 cos γ − sin γ 0

sin γ cos γ 0
0 0 1

  cos β 0 sin β

0 1 0
− sin β 0 cos β


×

 1 0 0
0 cos α − sin α

0 sin α cos α

 . (49)

In the advanced CI algorithm the observation equations in-
volving vector magnetometer measurements are expressed
in the CRF. If the model parameter vector at the k-th GN
step xk is split into two subsets, the “geophysical” param-
eters in vector zk and the Euler parameters for a particular
satellite in vector ek , then for the i-th vector measurement
BVFMi of that satellite, the observation equation is

0 = −RCRF←VFM(ek)BVFMi + gi (zk) + ηηηi , (50)

= ai (xk) + ηηηi , (51)

where ηηηi is the error vector, and gi (zk) and ai (xk) are the
geophysical and total model vectors in the CRF, respec-
tively. The reason for solving in the CRF rather than the
VFM frame is to decouple the product RT

CRF←VFMgi (zk) that
exists in the latter system, thus decreasing the level of non-
linearity in the estimation process. Recalling Eq. (6), it can
be seen that Eq. (51) is in a form that is equivalent to having
di = 0.

Note that while the magnetospheric and associated in-
duced field parameters described so far are estimated by
iteratively solving LSLE-GN in Eq. (6) using Eqs. (7)
and (8), they do not represent the final Level-2 product
MMA SHA 2 because they are only estimated during geo-
magnetic quiet times. Rather, they provide a crucial step in
the generation of these products, which is elaborated upon
further in Section 7.5. This is the reason for using the term
“precursor” in Table 2.
5.2 Exploiting Swarm gradient information

One of the great advantages of the Swarm constellation
is that the low satellite pair have orbits that differ only by
1.4◦ in the values of their Right Ascension of the Ascend-
ing Node (RAAN), thus allowing for east-west gradiome-
try to be carried out at low-mid latitudes. Let the Swarm
low pair, denoted “A” and “B”, be at positions (r, θ, φ) and
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Fig. 1. Comparison of attitude error covariances (in nT2) computed with different methods over 3217 instances of CHAMP rotations from inertial frame
J2000 to the CHAMP CRF. Top panel shows covariance computed via Monte Carlo simulation of size N = 1000, second panel shows difference
between Monte Carlo covariance and that computed from the HB theory, and last panel shows difference between Monte Carlo covariance and that
computed from the CI method. Vertical axes are the six independent elements of the covariance matrices, specifically the first column followed by the
last two elements of the second column followed by the lower-right corner element. The horizontal axis shows the 3217 instances of rotation sorted
by cos δ.

(r, θ, φ + 	φ), respectively, where r , θ , and φ are the ra-
dius, colatitude and longitude, respectively, and 	φ is a
longitude increment. Assume that they provide vector mea-
surements BECEF(r, θ, φ) and BECEF(r, θ, φ+	φ) that have
been rotated into the Earth Centered Earth Fixed (ECEF)
frame, where the z axis points to the north geographic pole,
the x axis points along the prime meridian, and the y axis
completes the right-handed system. If these vectors are fur-

ther rotated into the local spherical NEC frame at the mid-
point of the satellite positions, then for small 	φ certain
components of their difference behave as a negative gradi-
ent of a potential function whose SH coefficients are multi-
plied by a gain factor of approximately

G−(m) =
√

2 − 2 cos m	φ, (52)
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Table 2. The advanced CI source parameterization and corresponding Level-2 product label.

Level-2
Product

Field
Source/Procedure

Description

MCO SHA 2 Core field
Spatial: geographic SH Nmax = 20

Temporal: order 5 splines, 6 month knot spacing

MLI SHA 2 Lithospheric field
Spatial nominal: geographic SH Nmax = 150

Spatial nuisance: geographic SH Nmin = 21, Nmax = 150, Mmin = 21

MMA SHA 2
(precursor)

Magnetospheric /
Induced field

Magnetospheric field
Spatial: dipole SH Nmax = 3, Mmax = 1

Temporal: discretized in 1 hour bins

Induced field
Spatial: dipole SH Nmax = 3, Mmax = 3

Temporal: discretized in 1 hour bins

MIO SHA 2 Ionospheric field

Spatial: quasi-dipole frame, underlying dipole SH Nmax = 60, Mmax = 12

Temporal: annual, semi-annual, 24,12, 8, and 6 hour periodicities plus induction

via a priori 3D conductivity model

Toroidal field

Spatial: meridional currents in quasi-dipole frame, underlying dipole

SH Nmax = 60, Mmax = 12, one expansion for the low Swarm satellite

pair, one expansion for the high satellite

Temporal: annual, semi-annual, 24,12, 8, and 6 hour periodicities

Observatory
biases

One static vector bias for each observatory

MSW EUL 2 Magnetometer
alignment

3 Euler angles per vector magnetometer in 30 day bins

as compared to the potential coefficients leading to the indi-
vidual field measurements. These components correspond
to the direction of the ECEF z axis in the NEC frame and
the direction of the average of the two measurement vectors
in the NEC frame. If these two directions are coincident,
then all components will exhibit this gain enhancement. It
can be seen that 0 ≤ G−(m) ≤ 2 and that within the range
0 ≤ m ≤ 150, the maximum gain for vector difference
measurements is found at approximately m = 129. Con-
versely, certain components of their sum behave as a nega-
tive gradient of a potential function whose SH coefficients
are multiplied by a gain factor of approximately

G+(m) =
√

2 + 2 cos m	φ. (53)

These components correspond to the direction of the ECEF
z axis in the NEC frame and the direction of the difference
of the two measurement vectors in the NEC frame. Again,
if these two directions are coincident, then all components
will exhibit this gain. Note that these gain factors are out of

phase such that
√
G2−(m) + G2+(m) = 2. The gain factors

are shown in Fig. 2 for the order range of the core and
crustal fields and are derived in Appendix B.

If one were only interested in recovering high de-
gree/order lithospheric signals, then based on the gain fac-
tors one might naively exclude the vector summation data
and focus only on the vector differences. However, the sum-
mation data is critical for determining broad-scale, highly
time varying fields such as the magnetospheric and the high-
frequency induced fields, which if not properly modeled can
cause spurious signals that mimic lithospheric signal. This
strongly suggests using the SIVW mechanism in order to
preserve the vector summation data, but account for sys-
tematic bias in its high degree/order lithospheric signal that
must certainly exist, especially given its low gain factors at
high orders. Because the CRFs of Swarm A and B (CRFA

and CRFB, respectively) cannot be considered the same, the
CI algorithm first rotates the observation equations for each
satellite to the local NEC coordinate system at the mid-point
between the two satellites before adding and subtracting. If
RMP←CRFA and RMP←CRFB be the rotations from CRFA and
CRFB to the mid-point, respectively, then a given pair of
vector measurements from Swarm A and B are transformed
to differences and sums via the following orthogonal trans-
formation[

a−(xk)

a+(xk)

]
= 1√

2

(−RMP←CRFA RMP←CRFB

RMP←CRFA RMP←CRFB

) [
aA(xk)

aB(xk)

]
.

(54)

The covariances are similarly transformed as(
C−− C−+
CT

−+ C++

)
= 1

2

(−RMP←CRFA RMP←CRFB

RMP←CRFA RMP←CRFB

)(
CAA 0

0 CBB

)
×

(−RMP←CRFA RMP←CRFB

RMP←CRFA RMP←CRFB

)T

, (55)

where the notation C(·,·) is now used to indicate auto or
cross-covariance.

At this point, the observation equations and covariance
of Eqs. (54) and (55) could be formally introduced into the
LSLE-GN framework of Eq. (6), with the modification of
an additional infinite variance term in the covariance to ac-
count for high degree/order lithospheric systematic bias in
the vector summations. In practice, however, it is much
more feasible to perform this through co-estimation of nui-
sance parameters as shown in Section 3. This means that
while Eq. (6) is strictly followed, Eqs. (7) and (8) are modi-
fied to include the crustal nuisance parameters. This essen-
tially modifies the Ak matrix in the previous equations and
renders the linearized observation equations at GN step k to
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Fig. 2. Plot of the gain factors versus SH order m for potential field SH coefficients when simple differences (red) and summations (blue) of vector
measurements of the Swarm low pair are used. The horizontal black line indicates a gain of unity. The vertical green line at m = 20 delineates the
region above where summation data is considered too contaminated for inclusion in the nominal crustal field model. The vertical cyan line indicates
the order of maximum gain for difference data, which is approximately m = 129.

be 
			d−
			d+
			dC

			dOHM

 =


Ar

− Ah
− 0

Ar
+ Ah

+ Ah
+

Ar
C Ah

C Ah
C

Ar
OHM 0 0


 			xr

			xh

			nh

 , (56)

where the subscript “k” has been suppressed, the subscripts
“−”, “+”, “C”, and “OHM” indicate vector differences,
summations, Swarm satellite C (the high satellite), and the
ground observatories, respectively, and the superscripts “h”
and “r” indicate the high degree/order lithospheric field pa-
rameters containing systematic bias in the summation data,
and the remainder of the parameters, respectively. Like-
wise, 			xh, 			nh, and 			xr are the vector adjustments to the
nominal and nuisance high degree/order lithospheric fields,
and the remaining nominal parameters, respectively. Note
that because of its high altitude, the measurements from
Swarm C are assumed to have a low SNR in the high de-
gree/order lithospheric field, and are therefore eliminated
from the nominal model. In the case of the OHM mea-
surements, the static vector biases that are solved for effec-
tively decouple this data from the static lithosphere and so
it is not affected by either the nominal or nuisance litho-
spheric parameters, at least for n > 20. The C matrix
in Eqs. (7) and (8) is now that in Eq. (55). However, in
the current implementation of the CI algorithm, C−+ is ig-
nored. Again, it should be stated that when solving LSLE-
GN, only the nominal parameters are used to calculate 			dk

and Ak and are the only parameters updated. The nui-
sance parameters are only included to expedite the use of
the dense SIVW covariance matrix. In this study, the high

degree/order lithospheric nuisance field is defined to be in
the range n, m > 20, as shown by the green vertical line in
Fig. 2, and so does not include the time varying part of the
internal field.
5.3 Weighting and robust estimation

The next task is to define C in Eqs. (7) and (8) for
each measurement type. For the vector differences and
summations, this is commensurate to defining CAA and
CBB in Eq. (55). Beginning with the simplest case, the
OHM measurement noise covariance is expressed in the
form COHM = σ 2

OHMI, where σ 2
OHM is a function of ge-

omagnetic latitude with polar stations having higher vari-
ance than lower latitude stations. Thus the noise is treated
as isotropic and uncorrelated between vector components
and other data. Likewise, satellite scalar measurements are
treated as uncorrelated with all other data and the variance
is denoted by σ 2

F . For satellite vector measurements, the
formalism of Section 4 is employed to account for the CRF
attitude error while an additional isotropic term is added
to account for instrument noise (Holme, 2000) and is cho-
sen here to match the scalar variance, which is assumed the
same for each spacecraft fluxgate magnetometer. Therefore,
CAA = σ 2

F I + CCRFA(xk) and CBB = σ 2
F I + CCRFB(xk). No-

tice that because the attitude error (second term) is a func-
tion of BCRF(xk), then CAA and CBB change at each GN
iteration. Specifically, both CCRFA(xk) and CCRFB(xk) are in
the form of Eq. (35) under the assumptions of Section 4.3.
These vector measurements are also assumed uncorrelated
with all other data.

If the linearized model residuals are Gaussian distributed,
then a weighted least-squares estimate, which minimizes
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the �2 norm of a vector, as does LSLE-GN, would provide
the maximum-likelihood estimate. Since this is rarely the
case in real-world problems, the estimator can suffer delete-
rious effects due to excessive influence of outliers. To com-
bat this, a robust estimation procedure know as “Iteratively
Reweighted Least-Squares” (IRLS) with Huber weighting
will be employed here (Constable, 1988). This method has
been used successfully in such models as CM4 (Sabaka et
al., 2004) where details may be found. What is important
here is that the IRLS formulation is defined for uncorre-
lated, scalar measurements. IRLS assigns Huber weights to
the i-th measurement at the k-th GN iteration as a function
of its standard deviation σi and current residual ei,k accord-
ing to

wi,k = 1

σ 2
i

min

(
cσi

|ei,k | , 1

)
, (57)

where the underlying Huber distribution is defined as hav-
ing a Gaussian core for |ei,k | ≤ cσi , and Laplacian tails
(Constable, 1988). A value of c = 1.5 is used by the CI al-
gorithm. All measurement types conform to the structure of
Eq. (57) except the vector differences and summations. To
rectify this, the Huber weighting is applied to the principle
components of the covariance in Eq. (55), which follows
readily from the eigendecompositions of CAA and CBB.

In Appendix A it is shown that Euu = 0. It follows from
Eq. (35) that CCRFA BCRFA = 0, which means that CCRFA

exists in a 2-dimensional subspace that is spanned by the
columns of a 3×2 matrix U⊥A that are orthogonal to BCRFA .
The eigendecomposition of CAA is then given by

CAA = (
B̂CRFA UCRFA

) (
σ 2

F 0T

0 σ 2
F I + ���A

)
× (

B̂CRFA UCRFA

)T
, (58)

where B̂CRFA is the unit vector in the direction of BCRFA ,
UCRFA = U⊥A UA is a 3 × 2 matrix whose columns span the
range of CCRFA , and UA���AUT

A is the eigendecomposition
of UT

⊥A
CCRFA U⊥A where the 2 × 2 matrix UA is orthogonal

and the 2 × 2 matrix ���A is diagonal with positive eigen-
value entries. Of course a similar development leading to
Eq. (58) applies to CBB. Thus, using Eq. (55) and Eq. (58)
the residuals are rotated into the principle axes of the covari-
ance matrix in Eq. (55) where σ 2

F , σ 2
F I +���A and σ 2

F I +���B

supply the σi needed for determining the Huber weighting
in Eq. (57).
5.4 Regularization

What remains is to define the quadratic norms in Eq. (8)
that are used to regularize the system. For the core SV
and ionosphere the norms are similar to those used in the
CM4 model (Sabaka et al., 2004) and earlier Swarm sim-
ulation studies (Sabaka and Olsen, 2006). A combination
of the mean-squared magnitude of B̈r over the sphere at the
core-mantle boundary (CMB) and at Earth’s surface were
used to constrain the core SV, while the nightside iono-
spheric E-region currents were minimized by including a
norm that measures the mean-squared magnitude of the E-
region equivalent current, Jeq, flowing at 110 km over the
night-time sector defined as 1100–0500 hrs local time. In

addition, these currents are further smoothed by minimiz-
ing the mean-squared magnitude of the surface divergence
of the diurnally varying portion of Jeq at mid-latitudes at all
local times.

For this study two additional norms were employed. The
first is motivated by the presence of a gap in the coverage of
the satellites resulting in a polar cap of a few degrees in half-
angle. Because zonal SH terms are most affected by these
gaps, a norm which minimizes the square of the magnetic
potential of the lithospheric field for degrees n ≥ 60 at both
the north and south geographic poles was developed. The
final norm minimizes the sum of square deviations of the
Euler angles in each time bin with the average value over
the entire mission domain as determined from the current
nominal values. This is done separately for each of the three
angles.

In summary, Nq = 6 quadratic norms are applied in
Eq. (8), four of which are similar to those used in previous
studies, and two of which are experimental. It is expected
that similar norms will be used for the actual mission anal-
ysis, but development is continuing on the CI algorithm and
could quite possibly lead to better regularization techniques.
The advanced CI algorithm has now been developed and
will next be applied to the V2 simulation in Section 6.

6. The V2 Simulation
The V2 closed-loop simulation is one of several levels of

synthetic mission data required by ESA to validate the algo-
rithms of the Level-2 data facility. This simulation uses syn-
thetic data (“Test Data Set-1” or TDS-1) described in Olsen
et al. (2013) for testing the various chains of SCARF. For
testing the CI chain, a data subset was used representative
of geomagnetic quiet times during a 4.5 year period from
July 1998 through December 2002. These quiet periods
are defined as times when the geomagnetic activity index
Kp ≤ 2o and the Dst-index, measuring the strength of the
magnetospheric ring-current, does not change by more than
2 nT/hr. The data sampling period was set to 30 secs. The
test data set contains contributions from the core field and
secular variation (SV), lithospheric field, and primary and
secondary ionospheric and magnetospheric fields. Note that
toroidal fields where omitted from the synthetic data. Not
only was Swarm satellite constellation data synthesized, but
also a complementary OHM data set. In addition, random
noise has been added to the satellite data. The requirements
for the accuracy of the estimated models with respect to
the reference models are listed in Table 3. The “target”
and “threshold” requirements refer to desired and manda-
tory levels of accuracy, respectively, based upon modeling
experience.

The core field is defined for SH degrees n = 1–20 and
consists of snap-shots derived from order 6 spline models
(Lesur et al., 2010) that run from 2003.0 to 2008.0 inclu-
sive, but are shifted by 5 years (i.e. to 1998.0 to 2003.0) in
order to be compatible with the data period used for TDS-
1. However, for SH degrees n = 14–20 the core field
static terms have been replaced by those of the lithospheric
field. The lithospheric field consists of SH degrees n = 14–
250, where n = 14–15 taken from model POMME-6.1
(Maus et al., 2010), degrees n = 16–90 are taken from
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Table 3. Target and threshold requirements of estimated field accuracy for V2.

Product Field Target requirement Threshold requirement

MCO SHA 2 Core field, SV on ground,

n = 2–16, time averaged 1 nT/yr 3 nT/yr

MLI SHA 2 Lithospheric field, accumulated 40 nT, 120 nT,

error on ground for range n = 16–150 for range n = 16–133

MIO SHA 2 Ionospheric field, average relative 10% globally 10% equator-ward

error in |B| on ground of ±55◦ magnetic latitude

MMA SHA 2 Magnetospheric field coh2 > 0.8 coh2 > 0.5

coh2 > 0.95 for dipole terms coh2 > 0.75 for dipole terms

Table 4. Angles defining rotations between VFM and CRF systems in
TDS-1.

α β γ

[arcsecs] [arcsecs] [arcsecs]

Swarm A −1724 3488 −618

Swarm B 808 −434 −1234

Swarm C 2222 2991 3115

model MF7 (Maus, 2010a), and degrees n = 91–250 are
taken from model NGDC-720 (version 3p1) (Maus, 2010b)
scaled by factor 1.1. The primary ionospheric field is based
on that of CM4 (Sabaka et al., 2004), and the secondary
field SH coefficient vector ιιι(ω) is computed from the pri-
mary vector εεε(ω) at each frequency ω via the relationship
ιιι(ω) = Q(ω)εεε(ω) as discussed in Section 5.1. The coupling
matrices Q(ω) come from a 3D mantle conductivity model
(Kuvshinov, 2011). The magnetospheric primary field is
similar to that of the E2E+ simulation (Tøffner-Clausen et
al., 2010) and is based on an hour-by-hour spherical har-
monic analysis of worldwide distributed observatory data.
The secondary magnetospheric field is computed from the
same set of coupling matrices as the ionospheric field.

For synthetic satellite data, the VFM systems have been
rotated with respect to their CRFs via RCRF←VFM from
Eq. (49) by the amounts shown in Table 4. Note, how-
ever, that TDS-1 does not include attitude error in the
rotation RCRF←J2000. Their synthetic instrument noise is
based upon CHAMP experience and Swarm specifica-
tions and is correlated in time, but uncorrelated among
vector components. More details are given in Olsen et
al. (2013). The standard deviations of the noise are
(0.07, 0.1, 0.07) nT for (Br , Bθ , Bφ), in agreement with
Swarm performance requirements. For synthetic OHMs,
isotropic noise has been applied such that the standard de-
viations are (7, 7, 7) nT and (15, 15, 15) nT for locations
equator-ward and pole-ward of ±50◦ geomagnetic latitude,
respectively, for (Br , Bθ , Bφ). For the CI analysis, the at-
titude error was treated as isotropic and uncorrelated such
that Ca = σ 2

a I in Eq. (35), where σa = 10 arcsecs, even
though no attitude error technically exists in the TDS-1
data. The standard deviation of the isotropic instrument
noise was set to σF = 3 nT, which is much larger than
present in the TDS-1 data. Although no noise has been
added to the TDS-1 OHM synthetic data, the noise treat-
ment in the CI follows what is actually expected from real

data, that is, C = σ 2
OHMI, where σOHM = 7 and 15 nT for

station locations equator-ward and pole-ward of ±50◦ geo-
magnetic latitude, respectively.

7. Results and Discussion
The results of applying the advanced CI algorithm to the

TDS-1 data set of the V2 simulation will now be briefly
discussed. While these were found to be quite favorable, it
should be stressed that this is a simulation based upon syn-
thetic data containing contributions from forward models
similar to those used in the CI, such as the ionospheric pri-
mary and secondary fields. Therefore, it is possible that per-
formance could be degraded when analyzing data from the
actual mission. The three metrics employed by Sabaka and
Olsen (2006) will be used here, which are defined in terms
of the real and imaginary parts of complex SH coefficients
of a field, denoted generically as gm

n and hm
n , respectively.

7.1 Metrics
The first metric is the Lowes-Mauersberger spectrum,

Rn(r), of Lowes (1966)

Rn(r) = (n + 1)
(a

r

)2n+4 n∑
m=0

[
(gm

n )2 + (hm
n )2

]
, (59)

where a and r are the reference and evaluation radii, re-
spectively. The Rn(r) are the mean-square magnitude of an
internal field over a sphere of radius r . The second metric
is the degree correlation, ρn , of two fields given by

ρn =
∑n

m=0

[
gm

n,1gm
n,2 + hm

n,1hm
n,2

]√∑n
m=0

[
(gm

n,1)
2 + (hm

n,1)
2
] ∑n

m=0

[
(gm

n,2)
2 + (hm

n,2)
2
] ,

(60)

where gm
n,1 and hm

n,1 are from the first field and gm
n,2 and hm

n,2
are from the second field. It has a range of −1 ≤ ρn ≤ 1
and is invariant to scale factors on the degree n part of the
fields. The third metric is the sensitivity matrix, S(n, m),
given by

S(n, m) =


100

hm
n,r −hm

n,t√
1

2n+1

∑n
m=0[(gm

n,t )
2+(hm

n,t )
2]

, for m < 0

100
gm

n,r −gm
n,t√

1
2n+1

∑n
m=0[(gm

n,t )
2+(hm

n,t )
2]

, for m ≥ 0

,

(61)

where gm
n,r and hm

n,r are from the recovered field and gm
n,t

and hm
n,t are from the true field. Thus, S(n, m) represents
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Fig. 3. The Rn spectrum of the MCO core field static part (top) and its first time derivative (bottom), or SV, at epoch 2000.0 at Earth’s surface. The
black lines are the reference field and the blue lines are the difference between reference and recovered fields.

the percentage degree-normalized error in a recovered co-
efficient of degree n and order m.

There is one additional metric that will be used to eval-
uate the V2 results. This is the “squared-magnitude coher-
ence”, or coh2, whose range is 0 ≤ coh2 ≤ 1 and mea-
sures the similarity between input and output signals of a
system. For constant parameter linear systems, coh2 = 1,
but this can decrease due to a number of issues, particularly
the presence of noise in the system. This has been used by
Olsen (1998) to analyze C-responses describing electrical
conductivity of the mantle beneath Europe, and details may
be found therein.
7.2 MCO core field

The Rn spectra of the MCO reference field (black) and
difference between reference and recovered fields (blue) at
epoch 2000.0 at Earth’s surface are shown in the top panel
of Fig. 3. The blue line falls several orders of magnitude
below the black line and indicates excellent agreement be-
tween the two models near the center of the model domain.
The same lines are shown for SV in the bottom panel where
the blue line is below the black until degree n > 19. The
accumulated error in SV is found to be less than 0.2 nT/yr
for all times within model domain for degree n = 2–20,
and thus, easily meets both the threshold and target values
specified in Table 3.

To aid in the comparison, the first time derivatives of the
MCO Gauss coefficients for degrees n = 1–4 are shown in
Fig. 4 for the reference (black) and recovered (red) fields.
The fields agree very well with most of the variations in the
lines exhibited over small ranges. In fact, a comparison of
the actual Gauss coefficients shows them to be almost indis-
cernible over the range of coefficient values. The advanced
CI algorithm is evidently recovering the MCO core field and
SV to within specifications.
7.3 MLI lithospheric field

In addition to assessing the CI algorithm performance
with respect to V2 accuracy requirements, it was of inter-
est to see the direct benefits of taking explicit advantage
of the magnetic gradient information for determination of
the small-scale lithospheric field. Therefore, two types of
models were derived from exactly the same magnetic field
observations. The first model, denoted as “field only”, was
constructed by considered the Swarm data from three single
satellites, whereas the second model, denoted as “field plus
gradient”, was constructed by explicit use of the constella-
tion aspect of Swarm by using magnetic gradient informa-
tion with SIVW.

The Rn spectra of the MLI reference field (black) and
the difference between reference and recovered fields for
the “field only” case (red) and the “field plus gradient” case
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Fig. 4. First time derivative, or SV, of MCO core field Gauss coefficients through time for n = 1–4. The black lines are the reference field and the red
lines are the recovered field.

(blue) at Earth’s surface are shown in the left panel of Fig. 5.
The plots indicate a roughly two-fold reduction in power in
the error per degree above about n = 45 when difference
data are exploited. The right panel indicates a far superior

recovery of coefficients in the case of “field plus gradient”
(blue) over the “field only” case (red) with regards to phase
of the models, i.e., degree correlation ρn . The former case
is now recovering a field that is positively correlated with
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Fig. 5. Left panel is Rn spectrum of reference MLI lithospheric field (black) and difference between it and a “field only” derived model (red) and
between it and the final “field plus gradient” derived model (blue) at Earth’s surface. Right panel is degree correlation ρn of “field only” (red) and
“field plus gradient” (blue) coefficients with the reference model coefficients. The vertical dashed lines indicate n = 133, which is the upper degree
limit for threshold accuracy requirements.

Fig. 6. Sensitivity matrix for MLI lithospheric field from “field plus gradient” derived model.
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Fig. 7. MLI lithospheric field difference maps in the Br component (nT) at ground between the reference model and the “field plus gradient” derived
model.

Fig. 8. Global maps of MIO ionospheric E-region equivalent current functions at vernal equinox at different universal times (UT) as recovered by
the CI algorithm. Each map is centered on noon magnetic local time. The current functions exist in a sheet at 110 km altitude. Current flows in a
counter-clockwise (clockwise) direction in the northern (southern) hemisphere with a 10 kA current flowing between each contour. The dip equator
is shown in blue.

the true field at the 0.93 level for n = 150, the degree limit
of the synthetic signal. The accumulated error at ground for
degrees n = 16–150 is only about 12 nT, which again is
well below both the target and threshold target values for
V2 accuracy.

A more complete view of the performance of the tradi-
tional field value method versus the gradient method can be
seen by examining the sensitivity matrix S(n, m) of the lat-
ter in Fig. 6. The “field plus gradient” recovery is excellent
for mid-valued m, but is nearly identical to the traditional
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Table 5. Average relative error in |B| on ground in MIO primary ionospheric field recovery.

Midnight Morning Noon Evening
|Magnetic latitude| < 50◦ 4.27% 4.45% 3.94% 3.97%
All latitudes 4.33% 4.57% 4.25% 4.12%

Feb–Apr May–Jul Aug–Oct Nov–Jan
|Magnetic latitude| < 50◦ 4.27% 4.32% 4.04% 5.23%
All latitudes 5.24% 3.46% 4.38% 4.19%

Overall
|Magnetic latitude| < 50◦ 4.16%
All latitudes 4.40%

approach (though not shown) for the m ≤ 20 regime, which
recall, conforms to the structure of lithospheric bias treat-
ment used in SIVW. There is also some improvement in the
purely sectorial terms (left and right edges).

Finally, a physical sense of the quality of the MLI litho-
spheric field recovery can be seen in difference maps of Br

at ground between the reference and “field plus gradient”
models in Fig. 7. Most differences are just a few nT, ex-
cept in regions around the geographic poles where they are
several tens of nT. This is no doubt due to polar gaps in the
Swarm orbital coverage.

While these results suggest an optimistic outlook that
the Swarm constellation is capable of accurately recover-
ing small-scale lithospheric structure, the application to real
data will be more challenging, especially at high latitudes.
However, if V2 performance is any indication of real perfor-
mance, then Swarm will go far in closing the gap in inter-
mediate lithospheric wavelength coverage that exists now
between satellites and aeromagnetic surveys.
7.4 MIO ionospheric field

The accuracy target requirement for the MIO primary
ionospheric field is 10% average relative error in |B| on
ground. Table 5 actually subdivides these numbers across
local time sectors (midnight, morning, noon, and evening)
and across seasons (February to April, May to July, August
to October, and November to January) for magnetic lati-
tudes equator-ward of ±50◦ and all latitudes. It can be seen
that every subdivision is performing almost twice as well
as the 10% requirement, with overall errors of 4.16% and
4.40% for the low latitude and all latitudes regions, respec-
tively.

The primary MIO ionospheric field source is modeled as
an equivalent sheet current at 110 km altitude in the CI al-
gorithm (Sabaka et al., 2002, 2004) and its corresponding
current function has been generated from the ionospheric
coefficients recovered from the V2 test and shown for dif-
ferent universal times (UT) at vernal equinox in Fig. 8. This
is also in very good agreement with the current function of
the MIO reference field. The advanced CI algorithm ap-
pears to be performing satisfactorily for this field source as
well.
7.5 MMA magnetospheric/induced fields

Recall that the test data are selected for magnetically
quiet times such that the CI products for core, lithosphere,
and ionosphere (primary and secondary) all reflect this.
However, the determination of continuous time series of
the spherical harmonic expansion coefficients of magneto-
spheric and corresponding induced sources requires data

taken during all geomagnetic conditions, as required for
Level-2 product MMA SHA 2. Therefore, this is achieved by
applying a second processing step, the MMA SHA 2 analy-
sis step, after CI in the following way: Predictions are made
from the output CI core, lithospheric, and primary and sec-
ondary ionospheric models derived during quiet times and
subtracted from each 1 min Swarm satellite measurement
and OHMs from all available ground observatories. The
resulting residuals (observations minus model values) are
expected to contain the magnetospheric (primary and sec-
ondary) field plus errors due to improper removal of all
other sources. From those residuals of each day estimates
are made of the spherical harmonic expansion coefficients
qm

n , sm
n describing the external (magnetospheric) sources for

Nmax = 3 and Mmax = 1, and coefficients gm
n , hm

n describ-
ing the induced field for Nmax = Mmax = 5. This is done
in bins of 1.5 hrs for the axial dipole coefficients g0

1 and q0
1

(which means that 16 values for each of those coefficient
pairs are determined per day) and in bins of 6 hrs for the
remaining 42 coefficients (resulting in 4 × 42 = 168 values
per day). In total, 200 coefficients are estimated for each
day using IRLS with Huber weights.

Figure 9 shows squared-magnitude coherence (coh2) be-
tween the input and the estimated time series for exter-
nal (red) and induced (blue) coefficients corresponding to
Nmax = 3 and Mmax = 1. There is generally excellent co-
herency for the external coefficients (coh2 well above 0.95)
and good coherence (coh2 > 0.8) for the induced coeffi-
cients, in particular for periods shorter than one month or
so. When using the coefficients for determination of mantle
conductivity, periods up to one month correspond to resolv-
ing conductivity down to 1200 km or so. Püthe and Ku-
vshinov (2013a, b) describe the estimation of mantle con-
ductivity from the Level-2 product MMA SHA 2 determined
in this way. Although this is a comparison between the ref-
erence magnetospheric and induced fields and the output
of the MMA SHA 2 analysis step, it still indicates that good
separation must exist between the magntospheric and in-
duced fields and the others in the CI estimation. As for the
accuracy requirements, the external field recovery exceeds
the target values for all periods while the internal field re-
covery generally exceeds the target for periods shorter than
one month and are mostly above the threshold requirement
for other periods.

8. Conclusions
This paper has presented an advanced CI algorithm that

includes many improvements over the basic algorithm de-
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Fig. 9. Squared-magnitude coherence (coh2) between MMA reference and primary magnetospheric (red) and secondary induced (blue) Gauss
coefficients determined in the MMA SHA 2 analysis step following the CI algorithm.

scribed in Sabaka and Olsen (2006), and most important
among these are the introduction of the SIVW mecha-
nism for mitigating systematic, non-zero mean bias in the
observations allowing for optimal combinations of data
to achieve improved models. In addition, this paper has
pointed out a way to improve on the handling of attitude er-
ror in vector magnetometer data put forth in the HB theory.
This will hopefully allow for even better error characteriza-
tion, and thus, model quality.

The performance of the advanced CI algorithm was eval-
uated using a synthetic test data set (TDS-1) from a full
mission simulation. In general, it was found to perform well
above both threshold and target accuracy requirements for
core, lithospheric, ionospheric, and magnetospheric and in-
duced. Only the recovery of induced fields at some periods
longer than one month were of suspect quality. This may be
due to the point-wise orthogonality condition with respect
to the core field that has been imposed on this field, which
of course would affect the longer periods since SV is on
the order of these longer periods. Although there were no
toroidal field contributions in the TDS-1 data, these fields
were nonetheless co-estimated and found to be negligible,
thus indicating a proper treatment in the model. All of this
suggests, at least from the standpoint of V2, that the ad-
vanced CI algorithm will be quite competent in delivering
high quality Level-2 products.

Although the advanced algorithm is a great improve-
ment over the basic algorithm, certain issues should still
be dealt with to further enhance performance. Recall that
when using the covariance matrix describing the error in
the vector differences and summations in Eq. (55) the cross-

covariance matrices C−+ have been ignored. This was done
to simplify the algorithm during development, but should
now be instated. The increase in deviations between ref-
erence and recovered Br from the lithosphere around the
geographic poles in Fig. 7 indicates that the polar gap prob-
lem should be further addressed. In addition, several issues
surrounding SIVW should be explored, such as the optimal
SH order m that delineates between the nominal and nui-
sance lithospheric fields, which could easily lead to better
models. In addition, SIVW could be used to account for
dayside bias when modeling the lithosphere, which would
reflect the current best methods for crustal field modeling
(Thomson and Lesur, 2007; Maus et al., 2007, 2008; Lesur
et al., 2008, 2013; Olsen et al., 2011). Finally, SIVW could
be applied to high degree SV modeling by mitigating the
bias due to the poor distribution of ground observatories. It
is planned to implement and test several of these ideas.
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figures were produced with GMT (Wessel and Smith, 1991).

Appendix A.
The purpose of this Appendix is to present a derivation

of Eq. (35), that is, the attitude error covariance under gen-
eral, finite rotations, and from that, the various forms used
in the HB theory. First, several useful properties of the
cross-product matrix will be given. The cross-product of
two vectors u and v can be expressed as a matrix-vector
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multiplication as follows

u × v = Euv, (A.1)

where u, v, and the cross-product matrix Eu are given by

Eu =u×=
 0 −u3 u2

u3 0 −u1

−u2 u1 0

 , u =
 u1

u2

u3

 , v =
 v1

v2

v3

 .

(A.2)

If R is an arbitrary rotation matrix, such that

R =
 RT

1
RT

2
RT

3

 , (A.3)

where R j is a column vector containing the elements of the
j-th row of R, then the following properties emerge

ET
u = −Eu, (A.4)

ET
uEv = (u · v) I − vuT, (A.5)

Euu = 0, (A.6)

and also

REuRT =
 RT

1
RT

2
RT

3

 (
u × R1 u × R2 u × R3

)
,

=
 0 −u · R1 × R2 u · R3 × R1

u · R1 × R2 0 −u · R2 × R3

−u · R3 × R1 u · R2 × R3 0

 ,

=
 (R2 × R3)

T

(R3 × R1)
T

(R1 × R2)
T

 u

 ×,

= (Ru) × . (A.7)

A.1 Covariance of a vector under general, finite rota-
tions due to random, zero-mean angular pertur-
bations

Consider the case of a compound rotation matrix R rep-
resenting successive rotations about three normalized axes
n̂, û, and ŵ such that

R = Rn̂(χ)Rû(δ)Rŵ(λ), (A.8)

where a general, elemental rotation matrix describing a pos-
itive rotation of angle � about the axis ê is given by (Wertz
and Larson, 1999)

Rê(�) = cos �I + (1 − cos �)êêT − sin �Eê. (A.9)

Using the properties of the cross-product matrix, the fol-
lowing additional property of interest may be derived

∂Rê(�)

∂�
RT

ê = − sin � cos �I − sin �(1 − cos �)êêT

+ sin2 �ET
ê + sin � cos � êêT

+ sin �(1 − cos �)êêT + 0 − cos2 �Eê

+0 + sin � cos �EêET
ê ,

= − sin � cos �I − sin �(1 − cos �)êêT

+ sin2 �ET
ê + sin � cos � êêT

+ sin �(1 − cos �)êêT + 0 − cos2 �Eê

+0 + sin � cos �
(
I − êêT

)
= −Eê. (A.10)

The goal is now to derive the covariance of a vector
B2 due to random, zero-mean perturbations about non-zero
angles of the rotation matrix R defined in Eq. (A.8) such
that

B2 = RB1. (A.11)

The linear-tangent approximation is used to relate the dif-
ferential of B2 with those of the angles χ , δ, and λ such
that

dB2 =
(

∂B2

∂a

)
da, a =

χ

δ

λ

 , da =
 dχ

dδ

dλ

 .

(A.12)

The covariance of B2 is then assumed to be

CB2 =
(

∂B2

∂a

)
Ca

(
∂B2

∂a

)T

, (A.13)

where da ∼ N (0, Ca). Taking the derivatives of B2 with
respect to χ , δ, and λ and using the various properties
previously derived yields

∂B2

∂χ
= ∂Rn̂(χ)

∂χ
RT

n̂(χ)B2,

= −En̂B2,

= −n̂ × B2,

= −n̂2 × B2, (A.14)
∂B2

∂δ
= Rn̂(χ)

∂Rû(δ)

∂δ
RT

û(δ)RT
n̂(χ)B2,

= −Rn̂(χ)EûRT
n̂(χ)B2,

= − [Rn̂(χ)û] × B2,

= −û2 × B2, (A.15)
∂B2

∂λ
= Rn̂(χ)Rû(δ)

∂Rŵ(λ)

∂λ
RT

ŵ(λ)RT
û(δ)RT

n̂(χ)B2,

= −Rn̂(χ)Rû(δ)EŵRT
û(δ)RT

n̂(χ)B2,

= − [Rn̂(χ)Rû(δ)ŵ] × B2,

= −ŵ2 × B2, (A.16)

where n̂2 = n̂, û2 = Rn̂(χ)û, and ŵ2 = Rn̂(χ)Rû(δ)ŵ
are the vectors n̂, û, and ŵ rotated into reference frame “2”,
respectively. It follows from Eq. (A.13) that the covariance
of B2 is given by

CB2 = [
n̂2 × B2 û2 × B2 ŵ2 × B2

]
Ca

×
 (n̂2 × B2)

T

(û2 × B2)
T

(ŵ2 × B2)
T

 , (A.17)

= EB2 ACaATET
B2

, (A.18)

where

A = (
n̂2 û2 ŵ2

)
. (A.19)

A.2 Covariance of a vector within the HB theory
framework

The treatment of attitude errors in satellite geomagnetic
data put forth in Holme and Bloxham (1996) derives covari-
ance expressions resulting from small random, zero-mean
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angular perturbations about a set of orthonormal axes n̂, û,
and ŵ, which is equivalent to setting χ = δ = λ = 0 in
Eq. (A.8). This leads to

A = (
n̂ û ŵ

)
, (A.20)

such that

AAT = n̂n̂T + ûûT + ŵŵT = I. (A.21)

They discuss three special cases, depending on the values of
the three perturbation variances, that will now be shown as
special cases of Eq. (A.18). Note that the isotropic compo-
nents in their formulae will be excluded from these deriva-
tions. In all cases it is assumed that Ca is a diagonal ma-
trix. The subscript “2” will also be omitted as it should be
understood in which reference system the covariance is ex-
pressed.

A.2.1 Three equal variances Here it is assumed that
σ 2 = σ 2

χ = σ 2
δ = σ 2

λ , and if B = |B|, then this leads to

CB = EBACaATET
B,

= σ 2EBAATET
B,

= σ 2EBET
B,

= σ 2
(
B2I − BBT

)
. (A.22)

A.2.2 Two equal variances Here it is assumed that
σ 2

χ �= σ 2
δ = σ 2

λ , which leads to

CB = EBACaATET
B,

= EB
[
σ 2

χ n̂n̂T + σ 2
δ

(
ûûT + ŵŵT

)]
ET

B,

= EB
[(

σ 2
χ − σ 2

δ

)
n̂n̂T + σ 2

δ I
]

ET
B,

= σ 2
δ

(
B2I − BBT

) + (
σ 2

χ − σ 2
δ

)
(n̂ × B) (n̂ × B)

T .

(A.23)

A.2.3 No equal variances Here it is assumed that
σ 2

χ �= σ 2
δ , σ 2

χ �= σ 2
λ , and σ 2

δ �= σ 2
λ , which leads to

CB = EBACaATET
B,

= EB
[
σ 2

χ n̂n̂T + σ 2
δ ûûT + σ 2

λ ŵŵT
]

ET
B,

= EB
[(

σ 2
χ − σ 2

λ

)
n̂n̂T + (

σ 2
δ − σ 2

λ

)
ûûT + σ 2

λ I
]

ET
B,

= σ 2
λ

(
B2I − BBT

) + (
σ 2

χ − σ 2
λ

)
(n̂ × B) (n̂ × B)

T

+ (
σ 2

δ − σ 2
λ

)
(û × B) (û × B)T .

(A.24)

Appendix B.
The purpose of this Appendix is to present a derivation

of Eqs. (52) and (53) and establish the conditions under
which they are valid. The magnetic field vector in the ECEF
frame at position (r, θ, φ), denoted B(r, θ, φ), is related to
the field vector in the local spherical NEC frame, denoted
B̃(r, θ, φ), through the rotation

B(r, θ, φ) = R(θ, φ)B̃(r, θ, φ), (B.1)

where

R(θ, φ) =
 sin θ cos φ cos θ cos φ − sin φ

sin θ sin φ cos θ sin φ cos φ

cos θ − sin θ 0

 ,

(B.2)

and (r, θ, φ) are the spherical coordinates of radius, co-
latitude, and longitude, respectively. This rotation can be
shifted to a new position (r, θ, φ′) such that φ′ − φ = 	φ

through a rotation about the ECEF z axis

R(θ, φ′) = Z(	φ)R(θ, φ), (B.3)

where

Z(	φ) =
 cos 	φ − sin 	φ 0

sin 	φ cos 	φ 0
0 0 1

 . (B.4)

Now, Swarm A and B provide two magnetic field vector
measurements at positions (rA, θA, φA) and (rB, θB, φB), re-
spectively, that differ only in longitude such that φB −φA =
	φ. If all quantities that are evaluated at (rA, θA, φA)

and (rB, θB, φB) are indicated by a subscript “A” and “B”,
respectively, then using Eq. (B.3), the difference in their
ECEF vector measurements can be expressed as

BB − BA = RBB̃B − RAB̃A,

= RB
[
B̃B − B̃A

] + [RB − RA] B̃A,

= RB
{[

B̃B − B̃A
] + RT

A

[
I − ZT(	φ)

]
RAB̃A

}
.

(B.5)

This can also be expressed as

BB − BA = RA
{[

B̃B − B̃A
] + RT

B [Z(	φ) − I] RBB̃B
}
.

(B.6)

Note that to first-order in 	φ

1

2
[I + Z(	φ)] ≈

 1 −	φ

2 0
	φ

2 1 0
0 0 1

 = Z(	φ/2), (B.7)

and

[Z(	φ) − I] = [
I − ZT(	φ)

] ≈
 0 −	φ 0

	φ 0 0
0 0 0

 = Eẑ	φ,

(B.8)

which leads to

RT
A

[
I − ZT(	φ)

]
RA = RT

B [Z(	φ) − I] RB

≈
 0 0 − sin θ

0 0 − cos θ

sin θ cos θ 0

 	φ

= E ˜̂z	φ, (B.9)

where ẑ and ˜̂z are the unit vectors in the direction of the
ECEF z axis in the ECEF and NEC frames, respectively.
Using Eqs. (B.5)–(B.9) leads to the following expression
that is first-order accurate in 	φ

1

2

[
RT

A + RT
B

]
[BB − BA] = 1

2
RT

A

[
I+ZT(	φ)

]
[BB−BA] ,

≈ RT
AZT(	φ/2) [BB − BA] ,

≈ RT
1
2 (A+B)

[BB − BA] ,

= B̃B−B̃A+ ˜̂z× 1

2

[
B̃B+B̃A

]
	φ,

(B.10)



T. J. SABAKA et al.: SWARM DATA ANALYSIS USING COMPREHENSIVE INVERSION 1221

where R 1
2 (A+B) is the rotation from the local spherical NEC

frame at the mid-point position of the satellites to the ECEF
frame. A similar expression may be derived for the sum of
the Swarm low satellite ECEF vector measurements that is
first-order accurate in 	φ, which gives the pair

RT
1
2 (A+B)

[BB − BA]= B̃B − B̃A + ˜̂z × 1
2

[
B̃B + B̃A

]
	φ

RT
1
2 (A+B)

[BB + BA]= B̃B + B̃A + ˜̂z × 1
2

[
B̃B − B̃A

]
	φ

.

(B.11)

If the magnetic field vector in the local spherical NEC
frame is represented as the negative gradient of a potential
function such that B̃A = −∇VA and B̃ = −∇VB, then
Eq. (B.11) may be rewritten as

RT
1
2 (A+B)

[BB − BA] = −∇ (VB − VA)

− ˜̂z × 1
2∇ (VB + VA) 	φ

RT
1
2 (A+B)

[BB + BA] = −∇ (VB + VA)

− ˜̂z × 1
2∇ (VB − VA) 	φ

.

(B.12)

Now, consider the magnetic potential due to sources inter-
nal to the satellite sampling shell at position (r, θ, φ)

V (r, θ, φ) = a
∞∑

n=1

(a

r

)n+1 n∑
m=−n

Cm
n Pm

n (cos θ)eimφ,

(B.13)

where a is a reference radius, Pm
n (cos θ) is an associated

Legendre function of spherical harmonic degree n and order
m, and Cm

n is a complex coefficient of degree n and order m
such that C̄m

n = C−m
n , where the overbar indicates complex

conjugation. If the positions of the Swarm satellite low
pair differ only in longitude by 	φ, then the difference in
potentials at (r, θ, φ) is given by

	V (r, θ, φ) = V (r, θ, φ + 	φ) − V (r, θ, φ),

= a
∞∑

n=1

(a

r

)n+1

·
n∑

m=−n

Cm
n Pm

n (cos θ)eimφ
(
eim	φ − 1

)
,

= a
∞∑

n=1

(a

r

)n+1 n∑
m=−n

C̃m
n Pm

n (cos θ)eimφ,

(B.14)

where C̃m
n is the set of modified coefficients C̃m

n =
Cm

n

(
eim	φ − 1

)
. The gain factor, G−(m), is defined here

to be the magnitude of the ratio of the modified to original
coefficients given by

G−(m) =
∣∣∣C̃m

n /Cm
n

∣∣∣ ,
= ∣∣eim	φ − 1

∣∣ ,
=

√
(cos m	φ − 1)2 + sin2 m	φ,

=
√

2 − 2 cos m	φ. (B.15)

One can also consider the sum in potentials at (r, θ, φ) given
by "V (r, θ, φ) = V (r, θ, φ +	φ)+ V (r, θ, φ). Following
a similar derivation, this leads to the following gain factors

G+(m) =
√

2 + 2 cos m	φ. (B.16)

Thus, Eq. (B.12) may now be finally rewritten as
RT

1
2 (A+B)

[BB − BA] = −∇ (	VA) − ˜̂z × 1
2∇ ("VA) 	φ

RT
1
2 (A+B)

[BB + BA] = −∇ ("VA) − ˜̂z × 1
2∇ (	VA) 	φ

.

(B.17)

If uSUM and uDIF are the unit vectors in the directions of
∇ ("VA) and ∇ (	VA), respectively, then the Swarm low
pair vector differences in Eq. (B.17) become exclusive func-
tions of 	VA in their ˜̂z and uSUM components since the sec-
ond term has no contribution in these directions. Similarly,
the Swarm low pair vector sums in Eq. (B.17) become ex-
clusive functions of "VA in their ˜̂z and uDIF components
since the second term has no contribution in these direc-
tions.

Equation (B.17) holds when the Swarm satellite low pair
positions are aligned in an approximately east-west orienta-
tion, which is true for low-mid latitudes. At higher latitudes
the two orbital planes intersect requiring one satellite to lag
behind the other in order to avoid collision. Here the dif-
ferences are more in the along-track direction which can
contain a significant north-south component.
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M. Noja, P. E. H. Olsen, J. Park, G. Plank, C. Püthe, J. Rauberg, P. Rit-
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