19,360 research outputs found

    Effects of ultrasound on Transforming Growth Factor-beta genes in bone cells

    Get PDF
    Therapeutic ultrasound (US) is a widely used form of biophysical stimulation that is increasingly applied to promote fracture healing. Transforming growth factor-beta (TGF-beta), which is encoded by three related but different genes, is known to play a major part in bone growth and repair. However, the effects of US on the expression of the TGF-beta genes and the physical acoustic mechanisms involved in initiating changes in gene expression in vitro, are not yet known. The present study demonstrates that US had a differential effect on these TGF-beta isoforms in a human osteoblast cell line, with the highest dose eliciting the most pronounced up-regulation of both TGF-beta1 and TGF-beta3 at 1 hour after treatment and thereafter declining. In contrast, US had no effect on TGF-beta2 expression. Fluid streaming rather than thermal effects or cavitation was found to be the most likely explanation for the gene responses observed in vitro

    Absolute dimensions of eclipsing binaries. XVII. A metal-weak F-type system, perhaps with preference for Y = 0.23-0.24

    Get PDF
    V1130 Tau is a bright (m_V = 6.56), nearby (71 +/- 2 pc) detached system with a circular orbit (P = 0.80d). The components are deformed with filling factors above 0.9. Their masses and radii have been established to 0.6-0.7%. We derive a [Fe/H] abundance of -0.25 +/- 0.10. The measured rotational velocities, 92.4 +/- 1.1 (primary) and 104.7 +/- 2.7 (secondary) km/s, are in fair agreement with synchronization. The larger 1.39 Msun secondary component has evolved to the middle of the main-sequence band and is slightly cooler than the 1.31 Msun primary. Yonsai-Yale, BaSTI, and Granada evolutionary models for the observed metal abundance and a 'normal' He content of Y = 0.25-0.26, marginally reproduce the components at ages between 1.8 and 2.1 Gyr. All such models are, however, systematically about 200 K hotter than observed and predict ages for the more massive component, which are systematically higher than for the less massive component. These trends can not be removed by adjusting the amount of core overshoot or envelope convection level, or by including rotation in the model calculations. They may be due to proximity effects in V1130 Tau, but on the other hand, we find excellent agreement for 2.5-2.8 Gyr Granada models with a slightly lower Y of 0.23-0.24. V1130 Tau is a valuable addition to the very few well-studied 1-2 Msun binaries with component(s) in the upper half of the main-sequence band, or beyond. The stars are not evolved enough to provide new information on the dependence of core overshoot on mass (and abundance), but might - together with a larger sample of well-detached systems - be useful for further tuning of the helium enrichment law.Comment: Accepted for publication in Astronomy & Astrophysic

    Pairing mean-field theory for the dynamics of dissociation of molecular Bose-Einstein condensates

    Get PDF
    We develop a pairing mean-field theory to describe the quantum dynamics of the dissociation of molecular Bose-Einstein condensates into their constituent bosonic or fermionic atoms. We apply the theory to one, two, and three-dimensional geometries and analyze the role of dimensionality on the atom production rate as a function of the dissociation energy. As well as determining the populations and coherences of the atoms, we calculate the correlations that exist between atoms of opposite momenta, including the column density correlations in 3D systems. We compare the results with those of the undepleted molecular field approximation and argue that the latter is most reliable in fermionic systems and in lower dimensions. In the bosonic case we compare the pairing mean-field results with exact calculations using the positive-PP stochastic method and estimate the range of validity of the pairing mean-field theory. Comparisons with similar first-principle simulations in the fermionic case are currently not available, however, we argue that the range of validity of the present approach should be broader for fermions than for bosons in the regime where Pauli blocking prevents complete depletion of the molecular condensate.Comment: 16 pages, 10 figure

    Landscape phage, phage display, stripped phage, biosensors, detection, affinity reagent, nanotechnology, Salmonella typhimurium, Bacillus anthracis

    Full text link
    Filamentous phage, such as fd used in this study, are thread-shaped bacterial viruses. Their outer coat is a tube formed by thousands equal copies of the major coat protein pVIII. We constructed libraries of random peptides fused to all pVIII domains and selected phages that act as probes specific for a panel of test antigens and biological threat agents. Because the viral carrier is infective, phage borne bio-selective probes can be cloned individually and propagated indefinitely without needs of their chemical synthesis or reconstructing. We demonstrated the feasibility of using landscape phages and their stripped fusion proteins as new bioselective materials that combine unique characteristics of affinity reagents and self assembling membrane proteins. Biorecognition layers fabricated from phage-derived probes bind biological agents and generate detectable signals. The performance of phage-derived materials as biorecognition films was illustrated by detection of streptavidin-coated beads, Bacillus anthracis spores and Salmonella typhimurium cells. With further refinement, the phage-derived analytical platforms for detecting and monitoring of numerous threat agents may be developed, since the biodetector films may be obtained from landscape phages selected against any bacteria, virus or toxin. As elements of field-use detectors, they are superior to antibodies, since they are inexpensive, highly specific and strong binders, resistant to high temperatures and environmental stresses.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    Measuring the quantum statistics of an atom laser beam

    Get PDF
    We propose and analyse a scheme for measuring the quadrature statistics of an atom laser beam using extant optical homodyning and Raman atom laser techniques. Reversal of the normal Raman atom laser outcoupling scheme is used to map the quantum statistics of an incoupled beam to an optical probe beam. A multimode model of the spatial propagation dynamics shows that the Raman incoupler gives a clear signal of de Broglie wave quadrature squeezing for both pulsed and continuous inputs. Finally, we show that experimental realisations of the scheme may be tested with existing methods via measurements of Glauber's intensity correlation function.Comment: 4 pages, 3 figure

    Entanglement properties of degenerate four-wave mixing of matter-waves in a periodic potential

    Get PDF
    In a recent experiment Campbell et al. [Phys. Rev. Lett. 96, 020406 (2006)] observed degenerate four-wave mixing of matter-waves in a one-dimensional optical lattice, a process with potential for generating entanglement among atoms. We analyse the essential quantum features of the experiment to show that entanglement is created between the quadratures of the two scattered atomic clouds and is a true many-body (rather than two-body) effect. We demonstrate a significant violation of entanglement inequalities that is robust to a moderate level of coherent seeding. The system is thus a promising candididate for generating macroscopically entangled atomic samples.Comment: 4 pages, 3 figure

    Quantum field effects in coupled atomic and molecular Bose-Einstein condensates

    Full text link
    This paper examines the parameter regimes in which coupled atomic and molecular Bose-Einstein condensates do not obey the Gross-Pitaevskii equation. Stochastic field equations for coupled atomic and molecular condensates are derived using the functional positive-P representation. These equations describe the full quantum state of the coupled condensates and include the commonly used Gross-Pitaevskii equation as the noiseless limit. The model includes all interactions between the particles, background gas losses, two-body losses and the numerical simulations are performed in three dimensions. It is found that it is possible to differentiate the quantum and semiclassical behaviour when the particle density is sufficiently low and the coupling is sufficiently strong.Comment: 4 postscript figure

    Coulomb corrections to bremsstrahlung in electric field of heavy atom at high energies

    Full text link
    The differential and partially integrated cross sections are considered for bremsstrahlung from high-energy electrons in atomic field with the exact account of this field. The consideration exploits the quasiclassical electron Green's function and wave functions in an external electric field. It is shown that the Coulomb corrections to the differential cross section are very susceptible to screening. Nevertheless, the Coulomb corrections to the cross section summed up over the final-electron states are independent of screening in the leading approximation over a small parameter 1/mrscr1/mr_{scr} (rscrr_{scr} is a screening radius, mm is the electron mass, ℏ=c=1\hbar=c=1). Bremsstrahlung from an electron beam of the finite size on heavy nucleus is considered as well. Again, the Coulomb corrections to the differential probability are very susceptible to the beam shape, while those to the probability integrated over momentum transfer are independent of it, apart from the trivial factor, which is the electron-beam density at zero impact parameter. For the Coulomb corrections to the bremsstrahlung spectrum, the next-to-leading terms with respect to the parameters m/ϵm/\epsilon (ϵ\epsilon is the electron energy) and 1/mrscr1/mr_{scr} are obtained.Comment: 13 pages, 4 figure

    Instability and Chaos in Non-Linear Wave Interaction: a simple model

    Full text link
    We analyze stability of a system which contains an harmonic oscillator non-linearly coupled to its second harmonic, in the presence of a driving force. It is found that there always exists a critical amplitude of the driving force above which a loss of stability appears. The dependence of the critical input power on the physical parameters is analyzed. For a driving force with higher amplitude chaotic behavior is observed. Generalization to interactions which include higher modes is discussed. Keywords: Non-Linear Waves, Stability, Chaos.Comment: 16 pages, 4 figure
    • …
    corecore