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In a recent experiment, Campbell et al. �Phys. Rev. Lett. 96, 020406 �2006�� observed degenerate four-wave
mixing of matter waves in a one-dimensional optical lattice. We analyze the essential quantum features of the
experiment to show that entanglement is created between the quadratures of the two scattered atomic clouds
and is a true many-body �rather than two-body� phenomenon. We demonstrate that well-known bipartite
entanglement inequalities are significantly violated and that this is robust to a moderate level of coherent
seeding. The system is thus a promising candidate for generating spatially separated macroscopically entangled
atomic samples.
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I. INTRODUCTION

A recent development in the field of quantum atom optics
has been the proposal by Hilligsøe and Mølmer of degener-
ate four-wave mixing of a Bose-Einstein condensate �BEC�
in a periodic potential �1�. The usual quadratic matter-wave
dispersion relation in free space ordinarily prevents colli-
sional processes in a single condensate generating new mo-
mentum components, although four-wave mixing has been
analyzed and demonstrated via collisions of distinct conden-
sates generated using Bragg scattering �2,3�. However, the
dispersion relation of a periodic potential can allow phase-
matched two-body collision processes within a moving
single condensate that conserve both quasimomentum and
energy, resulting in the generation of condensates with new
momenta. The proposal of Hilligsøe and Mølmer �1� was
recently implemented experimentally by Campbell et al. �4�
with a BEC loaded into a one-dimensional optical lattice.
When the phase-matching conditions for energy and quasi-
momentum were satisfied, both spontaneous and stimulated
scattering were observed, with an initial state with one qua-
simomentum being scattered into two distinct quasimomen-
tum states. Recent experimental work by Gemelke et al. �5�
has also investigated phase-matched scattering processes of
matter waves in a driven optical lattice.

Hilligsøe and Mølmer �1� used the mean-field Gross-
Pitaevskii equation �GPE� to analyze a one-dimensional BEC
moving in an optical lattice. Although multimode, the GPE
cannot describe spontaneous scattering processes and the cal-
culations in Ref. �1� required the initial state to be seeded
numerically by hand. In addition, a mean-field approach can-
not be used to determine the quantum correlations that are
necessary to show entanglement between the scattered mo-
mentum states. In this paper, we complement the approach of
Ref. �1� by performing fully quantum analyses of the dynam-
ics resulting from a simple three-mode description of the
degenerate four-wave-mixing process. While idealized, our
analysis allows us to demonstrate continuous variable en-
tanglement without the complications arising from a full
multimode, multidimensional analysis.

In terms of the entanglement produced by this process, we
note that Campbell et al. �4� suggest that “parametric ampli-

fication could also be an efficient means of producing pairs
of momentum entangled atoms for quantum information ap-
plications.” Although individual pairs of atoms become cor-
related in the scattering process, the fact that they are
bosonic and scatter into already occupied modes means that
the question of which pair that a particular atom belongs to is
meaningless. It is also difficult to know how individual pairs
�if detected� could be used for quantum information pro-
cesses as this requires a second degree of freedom such as
spin �6,7� that is not present in this experiment. This means
that as soon as more than the first two atoms are scattered,
pair correlations cannot be measured, even in principle.
However, the coherent nature of the scattering allows for the
buildup of many-body entanglement between the field
quadratures, which, while presently difficult to measure ex-
perimentally, is robust to losses and seeding. Although other
methods have been proposed and demonstrated for the gen-
eration of pair-correlated and entangled atoms from BEC
�6–11�, the method of Refs. �1,4� appeals because of its rela-
tive simplicity. The results discussed below suggest that de-
generate four-wave mixing could be an efficient way to gen-
erate entangled atomic samples.

II. FORMALISM

A. Description of model

We consider a condensate adiabatically loaded into a one
dimensional periodic potential in a single Bloch state with
quasi-momentum �k0. For particular combinations of lattice
depth and k0, there exists a phase-matched process that con-
serves both energy and quasi-momentum such that

2k0 = k1 + k2, 2��k0� = ��k1� + ��k2� , �1�

where the generated Bloch modes are k1 and k2, and ��ki� is
the energy of mode ki. Expanding the full Hamiltonian in
terms of Bloch states and using a rotating wave approxima-
tion, the interaction picture Hamiltonian is

Hint = i���â0
2â1

†â2
† − â0

†2â1â2� , �2�

where âi is the annihilation operator for quasimomentum
mode ki, and we have made the transformation â0→ â0ei�/4.
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The strength of the nonlinear interaction is represented by �,
and is given by

� =
U0

�A�
� dxu0�x�2u1�x�u2�x� , �3�

where U0=4��2a /m, with a the s-wave scattering length,
A� is the cross-sectional area of the system, and ui�x� is the
amplitude of the Bloch state of mode ki.

We have made several approximations here. The first is
that the Bloch states are a good approximation to the eigen-
states of the system. This will be true as long as the effective
interaction strength � is sufficiently small. Using mean-field
Bloch states appropriate to the effective potential of the lat-
tice plus initial density will extend the regime of validity for
short times while the overall density is unchanged, but will
alter the phase matching conditions due to the energy shifts
of the Bloch modes. The three-mode reduction is also only
appropriate for short times before scattering into other modes
becomes significant, while the dimensional reduction is ap-
propriate for times short enough that there are no appreciable
dynamics in the perpendicular dimensions.

B. Measures of entanglement

Quantum entanglement is a rigorously defined concept
which requires that the system density matrix not be sepa-
rable and is usually demonstrated by the violation of an ap-
propriate inequality. The fact that equal numbers of atoms
are scattered from k0 into k1 and k2 �without seeding� is not
sufficient to demonstrate entanglement, as this in itself only
involves the diagonal elements of the density matrix and can
be explained in a completely classical manner. We note here
that entanglement was initially explained by Schrödinger in
terms of superpositions, which have no classical analogue,
and is not compatible with classical ideas such as local real-
ism �12�.

To demonstrate entanglement we calculate both the Duan
criteria �13� �see also Simon �14�� and a set of Einstein-
Podolsky-Rosen �EPR� criteria developed by Reid �15�, both
of which establish the presence of continuous variable bipar-
tite entanglement. The criteria developed by Duan and Si-
mon are both necessary and sufficient to demonstrate en-
tanglement for Gaussian variables, whereas the EPR criteria
are merely sufficient. These many-body continuous-variable
criteria are more appropriate to the present case than any
consideration of entanglement between the individual atoms
of each scattered pair. This type of many-body entanglement
is also more robust to dissipation �11� as the loss of a small
number of atoms does not markedly affect the values of the
quadratures.

For quadrature entanglement, operational criteria have
been outlined by Dechoum et al. �16�, which follow from
inequalities developed by Duan et al. �13� based on the in-
separability of the system density matrix. We briefly outline
these criteria here, using the field quadrature operators

X̂i = âi + âi
†, Ŷi = − i�âi − âi

†� . �4�

To demonstrate entanglement between the modes, we define

the combined quadratures X̂±= X̂1± X̂2 and Ŷ±= Ŷ1± Ŷ2. Fol-

lowing the treatment of Ref. �16�, entanglement is guaran-
teed provided that

V�X̂±� + V�Ŷ�� � 4, �5�

where V�Xi� is the variance of Xi. We note here that we are
using a specific form of the Duan inequality which is most
appropriate for our system in the spontaneous regime, due to
the fact that the particles are scattered symmetrically into
each mode. In the seeded case, as we are only considering
small amounts of seeding, the inequality used is sufficient to
show entanglement.

To examine the utility of the system for the production of
states which exhibit the EPR paradox �17�, we use the
method developed by Reid �15�. We assume that a measure-

ment of �for example� the X̂1 quadrature will allow us to

infer with some error the value of the X̂2 quadrature, and

similarly for the Ŷi quadratures. By minimizing the rms error
in these estimates we find the inferred variances

Vinf�X̂1� = V�X̂1� −
�V�X̂1,X̂2��2

V�X̂2�
,

Vinf�Ŷ1� = V�Ŷ1� −
�V�Ŷ1,Ŷ2��2

V�Ŷ2�
, �6�

with those for the k2 momentum mode being found by swap-

ping the indices 1 and 2. As the X̂i and Ŷi operators do not
commute, the products of the actual variances obey a Heisen-

berg uncertainty relation, with V�X̂i�V�Ŷi��1. Hence we find
a demonstration of the EPR paradox whenever

Vinf�X̂i�Vinf�Ŷi� � 1. �7�

We therefore see that when the product of these inferred
variances falls below one, bipartite entanglement is present
between the different momentum modes.

III. RESULTS

A. Analytic approximation

In the limit that only a small number of atoms are scat-
tered from the initial condensate k0, we can make use of the
parametric or undepleted-pump approximation of quantum
optics. This approximation has also been utilized in the case
of coupled atomic and molecular BEC �18�. Setting �
=��â0

2� in the Hamiltonian �2� with � real results in the fol-
lowing Heisenberg equations of motion

dâ1

dt
= �â2

†,
dâ2

dt
= �â1

†, �8�

along with their Hermitian conjugates. The solutions to these
equations are well known from quantum optics �19�, and
provide all the operator moments needed to calculate the
entanglement criteria within this approximation. With the
two modes k1 and k2 initially unpopulated, we find

V�X̂−� + V�Ŷ+� = 4�cosh 2�t − 2 cosh �t sinh �t� ,
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Vinf�X̂i�Vinf�Ŷi� =
1

cosh2 2�t
� 1for t 	 0, �9�

which obviously violate the appropriate inequalities and can
be compared to the numerical results obtained below. As can
be seen from the figures, this analytic approximation is ex-
cellent for short times.

B. Numerical methods

To analyze the system without making the parametric ap-
proximation, we will use stochastic integration using the
well-known phase-space representations of quantum optics.
The Hamiltonian of the system may be mapped exactly onto
stochastic differential equations in the positive-P representa-
tion �20� following the usual methods �21�. Making the cor-
respondences â0→
, â1→�, â2→�, the stochastic equa-
tions are found to be

d


dt
= − 2�
+�� + �− ���
1,

d
+

dt
= − 2�
�+�+ + �− ��+�+
2,

d�

dt
= �
2�+ + ��
2/2�
3 + i
5� ,

d�+

dt
= �
+2� + ��
+2/2�
4 + i
6� ,

d�

dt
= �
2�+ + ��
2/2�
3 − i
5� ,

d�+

dt
= �
+2� + ��
+2/2�
4 − i
6� , �10�

where the 
 j are real Gaussian noise terms with the correla-
tions


 j = 0, 
 j�t�
k�t�� = � jk��t − t�� . �11�

The solutions for arbitrary normally ordered operator expec-
tation values at time t are found by numerically integrating
these equations for a large number of trajectories and form-
ing the appropriate ensemble average via, e.g.,

�
+�m
n → �:�â0
†�mâ0

n:� , �12�

where the overline represents a classical average and the ex-
pectation value is normally ordered.

It is of interest to compare the positive-P solutions to
those of the approximate, but stable, truncated Wigner rep-
resentation. This has been used with some success in inves-
tigations of BEC �22–28�, and allows for the calculation of
symmetrically ordered operator moments. Again following
standard procedures �21�, we can map the system Hamil-
tonian onto a generalized Fokker-Planck equation for the
Wigner pseudoprobability distribution, which has third-order
derivatives and hence no equivalent stochastic differential
equations. Although methods exist for a mapping onto sto-
chastic difference equations �29�, these seldom result in
equations that are simple to integrate numerically. We will
therefore truncate the third-order terms and map the resulting
Fokker-Planck equation onto differential equations for the
Wigner variables. This is justified here since the number of
particles is much larger than the number of modes. This re-
sults in the set of equations

FIG. 1. �Color online� The mode occupations as a function of
time. The solid line and the lower dashed line are the averages of
4.34�106 trajectories of the positive-P representation equations for
N0, N1, and N2 in the spontaneous case. Note that N1=N2 and that
the Wigner results are indistinguishable. The dotted line and the
upper dashed lines are the Wigner results �6.6�105 trajectories� for
N0, N1, and N2 with an initial seed, N1�0�=100. All quantities plot-
ted in this and subsequent figures are dimensionless. The horizontal
axis is a parametrized time, �=�	
�0�	2t.

FIG. 2. �Color online� The Duan correlation, V�X̂−�+V�Ŷ+�, with
and without an injected seed. The lower three lines are for the
spontaneous case, with the dotted line being analytical, the dash-
dotted line being the positive-P prediction, and the full line being
the Wigner prediction. The dashed line is the Wigner prediction
with N1�0�=100. Note that the analytical solution is almost indis-
tinguishable from the positive-P solution until the latter turns and
begins to increase.
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d


dt
= − 2�
*��,

d�

dt
= �
2�*,

d�

dt
= �
2�*. �13�

Note that, although these equations may appear determinis-
tic, the initial values are chosen from the appropriate Wigner
distribution, so that quantum noise is included in the initial
conditions. Symmetrically ordered operator expectation val-
ues at time t are found by ensemble averages, e.g.,

�
+�m
n → ��â0
†�mâ0

n�sym. �14�

C. Numerical results

The numerical solutions are best parametrized by �
=�	
�0�	2t. For our results we chose an initial coherent state
for mode k0 containing 	
�0�	2=104 atoms, with modes k1

and k2 either both unoccupied or one occupied with a small
seed of 100 atoms. In practice, we found that integration of
the positive-P equations of motion became unstable for times
greater than �=6, and was probably not trustworthy after �

5. However, this covers the region of maximum violation
of the inequalities of Eqs. �5� and �7�. The results are pre-
sented in the three figures, which allow us to compare the
predictions of the approximate analytic solutions, the for-
mally exact positive-P representation solutions, and those of
the truncated Wigner representation. We show the atom num-
bers in the three modes in Fig. 1 for both the spontaneous
and seeded situations. For the spontaneous case, we find that
the positive-P and Wigner methods give almost identical re-
sults over most of the range shown, thus we can be confident
of the Wigner solutions in this regime. We see that a seed in
the k1 mode with only 1% of the number of atoms in the k0
mode gives appreciably faster scattering into modes k1 and
k2, with almost full occupation at a time when the spontane-
ous case has seen approximately 10% of the atoms scattered.
A similar effect was observed in the experiment of Campbell
et al. �4�.

We now investigate the quantum correlations between the
two scattered modes, in both the spontaneous and seeded
cases. In Figs. 2 and 3, we see that the spontaneous process
gives an almost complete violation of the inequalities over a
relatively large range of interaction times. We also see that,
with one of the modes seeded at 1% of the number in the k0
mode, the inequalities are still strongly violated. This system,
therefore, seems more robust to seeding than the nondegen-
erate optical parametric amplifier �OPA�, where, for ex-
ample, an injection level of 1% had a much less noticeable
effect on the mean number of down-converted photons, but
was sufficient to almost destroy some quantum correlations
�30�. We also note here that the model of the four-wave-
mixing process and the OPA are only similar once the para-
metric approximation is made, which results in a quadratic
Hamiltonian for both cases.

It may be of considerable practical interest that the
slightly lesser violations occur for large numbers of atoms in

the two scattered modes once the system is seeded, as can be
seen by comparison with Fig. 1. Also of interest is that the
EPR product demonstrates entanglement with seeding in a
region where the form of the Duan inequality that we have
used does not. This is not a contradiction as the most general
form of the Duan inequality �13� does not define the quadra-
tures in the symmetric manner we have used here, so that a
more appropriate form would be violated.

IV. CONCLUSIONS

We have calculated the entanglement properties of a
Hamiltonian that gives a simplified description of the lattice
four-wave-mixing experiment of Campbell et al. We have
shown that the system exhibits entanglement between the
scattered modes and is a candidate for a demonstration of the
EPR paradox with massive particles. Seeding of one of the
scattered modes allows for substantially quicker conversion
than in the spontaneous case, without degrading the violation
of the appropriate inequalities significantly. As the entangle-
ment is between the entire modes rather than between indi-
vidual pairs of scattered atoms, it is not destroyed by small
rates of atomic loss, whereas entanglement between indi-
vidual pairs would be much more sensitive to such losses. A
fully quantum spatial analysis that could more closely de-
scribe experiments is currently being investigated.
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FIG. 3. �Color online� The EPR correlation, Vinf�X̂1�Vinf�Ŷ1�.
The dash-dotted line is the spontaneous positive-P result, the solid
line is the spontaneous Wigner result, and the dashed line is the
stimulated Wigner result with N1�0�=100. The analytical solution is
again indistinguishable from the numerical solutions up until they
begin to turn.
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