10 research outputs found
Hydrothermal Liquefaction of Bark-containing Nordic Biomass
Hydrothermal liquefaction (HTL) is a thermochemical process that takes advantage of the water present in the feedstock under process conditions where the water is kept as a liquid solvent using pressurized systems, avoiding energy losses to heat of evaporation and allowing for high carbon conversion to liquid fuels. In the Nordic countries, woody biomass residues, originating from pine and spruce, are seen as an abundant biomass feedstock for biofuels and bioenergy production due to the extensive forest industry and the by-products they generate. By using by-products and wastes as the source material, the fuel product becomes more sustainable. Bark is not often included in woody biomass feedstocks for HTL, therefore investigating its addition can provide opportunities for a more effective use of this waste stream. Spruce and pine stem wood, as well as their bark fractions, received from a Norwegian wood products company was milled and mixed with water to obtain slurries serving as the source material in this study. The stem wood underwent sub- and supercritical HTL conversion, at 350 and 400 °C respectively, in a 1L CSTR reactor operated in batch mode. The bark fractions were mixed with the stem wood at varying percentages to study the effect of bark presence in the slurry at supercritical (400 °C) conditions. Both the proportions of the HTL products (gaseous, liquid, and solid) and the product components displayed differences when the experiments were performed at sub- and supercritical conditions. Bark addition seemed to increase the gas yields and lower the char yields but did not alter the properties of the liquid products significantly. The results show that bark in the feedstock did not affect the investigated properties negatively, which is promising for biofuel production via HTL.Hydrothermal Liquefaction of Bark-containing Nordic BiomasspublishedVersio
Karakterisering av en semiledande svällande tejp
I närvaro av fukt och lokaliserade fältförbättringar kan vattenträd utvecklas inom polymerisoleringen av HV subsea kraftkablar. Vattenträd tenderar att växa obemärligt och försämra isolationsegenskaperna med tiden. Fuktigheten i isoleringen kan effektivt reduceras genom applicering av halvledande svällningsband. Halvledande svullnadstejp ger en unik kombination av elektrisk ledningsförmåga och stor vattenhållande kapacitet. Detta hänför sig till förekomsten av ledande kolsvart (CB) respektive superabsorberande polymer (SAP) partiklar. För att förstå massatransportegenskaperna hos vattenånga inom ett svällande tejp bestämdes transportkoefficienterna. Sorptionen av vattenånga avslöjade koncentrationsberoende transportkoefficienter och en allmän ökning i diffusion och löslighet med ökande vattenaktivitet. Detta tillskrives SAP-komponenternas hygroskopiska och polyelektrolytegenskaper och resulterade i en ökning i diffusiviteten med en faktor 100, vid ökning av relativ fuktighet (RH) från 7 till 65%. Vid högre vattenaktivitet antogs att bildandet av immobila vattenklyftor minskade diffusionen av vattenånga. Flera sorptionslägen föreslogs för sorptionsbeteendet hos tejpen mellan 10 och 80% RH. Införandet av konduktivitet inom bandet minskar potentiella skillnader genom flera kabelskikt och efterföljande fältförbättringar. Konduktivitets- och vattensorptionsegenskaperna hos det halvledande svällningsbandet kan emellertid ändras genom mekaniska kompressioner, som utövas av omgivande kabelkomponenter. Den elektriska resistiviteten hos ett fuktigt svällande tejp under belastning bestämdes därför. På grund av bandets anisotropi utfördes elektriska resistivitetsmätningar över (radiell riktning) och tillsammans med (axiell riktning) tejpen. Bandens radiella och axiella riktningar dominerades av närvaron av SAP och CB. En signifikant minskning av bandets radiella resistivitet observerades när fuktigheten ökades från 40% till 60% RH. Resistiviteten minskade med en faktor 100. Ingen signifikant effekt av kompression observerades, men tejpen visade en minskande trend i resistivitet med ökande kompression. Vid 60% RH-radiell resistivitet närmade sig axiell resistivitet, och påverkan av SAP sänks. Den axiella resistiviteten var omkring 18 Ωcm. Tejpens axiella resistivitet påverkades mindre av fuktighet och kompression än den radiella resistiviteten. Åldrande avslöjar försämring av svullnadshöjd, men hade ingen inverkan på bandresistivitet.In presence of moisture and localized field enhancements water trees might develop within the polymeric insulation of HV subsea power cables. Water trees tend to grow unnoticeable and deteriorate the insulation properties with time. The humidity within the insulation can efficiently be reduced through the application of semiconducting swelling tapes. Semi conducting swelling tapes provide a unique combination of electrical conductivity and a large water retention capacity. This is attributed to the presence of conductive carbon black (CB) and superabsorbent polymer (SAP) particles, respectively. To understand the mass transport properties of water vapor within a swelling tape, transport coefficients were determined. The sorption of water vapor revealed concentration dependent transport coefficients and a general increase in diffusion and solubility with increasing water activity. This was attributed to the hygroscopic and polyelectrolyte properties of the SAP components and resulted in an increase in diffusivity by a factor of 100, when increasing the relative humidity (RH) from 7 to 65 %. At higher water activity, it was assumed that the formation of immobile water clusters reduced the diffusion of water vapor. Several sorption modes were suggested for the sorption behaviour of the tape between 10 to 80 % RH. The introduction of conductivity within the tape reduces potential differences throughout several cable layers and subsequent field enhancements. However, conductivity and water sorption properties of the semi-conductive swelling tape can be altered by mechanical compressions, exerted by surrounding cable components. The electrical resistivity of a humid swelling tape under load was therefore determined. Due to the anisotropy of the tape, electrical resistivity measurements were performed across (radial direction) and along with (axial direction) the tape. The radial and axial directions of the tape were dominated by the presence of SAPs and CBs, respectively. A significant reduction in radial resistivity of the tape was observed when increasing the humidity from 40 % to 60 % RH. The resistivity decreased by a factor of 100. No significant effect of compression was observed, but the tape showed a decreasing trend in resistivity with increasing compression. At 60 % RH radial resistivity approached axial resistivity, and the influence of SAPs is reduced. The axial resistivity was around 18 Ωcm. The axial resistivity of the tape was less affected by humidity and compression than the radial resistivity. Ageing reveal deterioration of swelling height, but had no influence on tape resistivity
Karakterisering av en semiledande svällande tejp
I närvaro av fukt och lokaliserade fältförbättringar kan vattenträd utvecklas inom polymerisoleringen av HV subsea kraftkablar. Vattenträd tenderar att växa obemärligt och försämra isolationsegenskaperna med tiden. Fuktigheten i isoleringen kan effektivt reduceras genom applicering av halvledande svällningsband. Halvledande svullnadstejp ger en unik kombination av elektrisk ledningsförmåga och stor vattenhållande kapacitet. Detta hänför sig till förekomsten av ledande kolsvart (CB) respektive superabsorberande polymer (SAP) partiklar. För att förstå massatransportegenskaperna hos vattenånga inom ett svällande tejp bestämdes transportkoefficienterna. Sorptionen av vattenånga avslöjade koncentrationsberoende transportkoefficienter och en allmän ökning i diffusion och löslighet med ökande vattenaktivitet. Detta tillskrives SAP-komponenternas hygroskopiska och polyelektrolytegenskaper och resulterade i en ökning i diffusiviteten med en faktor 100, vid ökning av relativ fuktighet (RH) från 7 till 65%. Vid högre vattenaktivitet antogs att bildandet av immobila vattenklyftor minskade diffusionen av vattenånga. Flera sorptionslägen föreslogs för sorptionsbeteendet hos tejpen mellan 10 och 80% RH. Införandet av konduktivitet inom bandet minskar potentiella skillnader genom flera kabelskikt och efterföljande fältförbättringar. Konduktivitets- och vattensorptionsegenskaperna hos det halvledande svällningsbandet kan emellertid ändras genom mekaniska kompressioner, som utövas av omgivande kabelkomponenter. Den elektriska resistiviteten hos ett fuktigt svällande tejp under belastning bestämdes därför. På grund av bandets anisotropi utfördes elektriska resistivitetsmätningar över (radiell riktning) och tillsammans med (axiell riktning) tejpen. Bandens radiella och axiella riktningar dominerades av närvaron av SAP och CB. En signifikant minskning av bandets radiella resistivitet observerades när fuktigheten ökades från 40% till 60% RH. Resistiviteten minskade med en faktor 100. Ingen signifikant effekt av kompression observerades, men tejpen visade en minskande trend i resistivitet med ökande kompression. Vid 60% RH-radiell resistivitet närmade sig axiell resistivitet, och påverkan av SAP sänks. Den axiella resistiviteten var omkring 18 Ωcm. Tejpens axiella resistivitet påverkades mindre av fuktighet och kompression än den radiella resistiviteten. Åldrande avslöjar försämring av svullnadshöjd, men hade ingen inverkan på bandresistivitet.In presence of moisture and localized field enhancements water trees might develop within the polymeric insulation of HV subsea power cables. Water trees tend to grow unnoticeable and deteriorate the insulation properties with time. The humidity within the insulation can efficiently be reduced through the application of semiconducting swelling tapes. Semi conducting swelling tapes provide a unique combination of electrical conductivity and a large water retention capacity. This is attributed to the presence of conductive carbon black (CB) and superabsorbent polymer (SAP) particles, respectively. To understand the mass transport properties of water vapor within a swelling tape, transport coefficients were determined. The sorption of water vapor revealed concentration dependent transport coefficients and a general increase in diffusion and solubility with increasing water activity. This was attributed to the hygroscopic and polyelectrolyte properties of the SAP components and resulted in an increase in diffusivity by a factor of 100, when increasing the relative humidity (RH) from 7 to 65 %. At higher water activity, it was assumed that the formation of immobile water clusters reduced the diffusion of water vapor. Several sorption modes were suggested for the sorption behaviour of the tape between 10 to 80 % RH. The introduction of conductivity within the tape reduces potential differences throughout several cable layers and subsequent field enhancements. However, conductivity and water sorption properties of the semi-conductive swelling tape can be altered by mechanical compressions, exerted by surrounding cable components. The electrical resistivity of a humid swelling tape under load was therefore determined. Due to the anisotropy of the tape, electrical resistivity measurements were performed across (radial direction) and along with (axial direction) the tape. The radial and axial directions of the tape were dominated by the presence of SAPs and CBs, respectively. A significant reduction in radial resistivity of the tape was observed when increasing the humidity from 40 % to 60 % RH. The resistivity decreased by a factor of 100. No significant effect of compression was observed, but the tape showed a decreasing trend in resistivity with increasing compression. At 60 % RH radial resistivity approached axial resistivity, and the influence of SAPs is reduced. The axial resistivity was around 18 Ωcm. The axial resistivity of the tape was less affected by humidity and compression than the radial resistivity. Ageing reveal deterioration of swelling height, but had no influence on tape resistivity
Characterization of the Electrical Resistivity and Water Sorption Properties of a Semiconducting Swelling Tape
In presence of moisture and localized field enhancements water trees might develop within the polymeric insulation of HV subsea power cables. Water trees tend to grow unnoticeable and deteriorate the insulation properties with time. The humidity within the insulation can efficiently be reduced through the application of semiconducting swelling tapes. Semi conducting swelling tapes provide a unique combination of electrical conductivity and a large water retention capacity. This is attributed to the presence of conductive carbon black (CB) and superabsorbent polymer (SAP) particles, respectively.
To understand the mass transport properties of water vapor within a swelling tape, transport coefficients were determined. The sorption of water vapor revealed concentration dependent transport coefficients and a general increase in diffusion and solubility with increasing water activity. This was attributed to the hygroscopic and polyelectrolyte properties of the SAP components and resulted in an increase in diffusivity by a factor of 100, when increasing the relative humidity (RH) from 7 to 65 %. At higher water activity, it was assumed that the formation of immobile water clusters reduced the diffusion of water vapor. Several sorption modes were suggested for the sorption behaviour of the tape between 10 to 80 % RH.
The introduction of conductivity within the tape reduces potential differences throughout several cable layers and subsequent field enhancements. However, conductivity and water sorption properties of the semi-conductive swelling tape can be altered by mechanical compressions, exerted by surrounding cable components. The electrical resistivity of a humid swelling tape under load was therefore determined. Due to the anisotropy of the tape, electrical resistivity measurements were performed across (radial direction) and along with (axial direction) the tape. The radial and axial directions of the tape were dominated by the presence of SAPs and CBs, respectively. A significant reduction in radial resistivity of the tape was observed when increasing the humidity from 40 % to 60 % RH. The resistivity decreased by a factor of 100. No significant effect of compression was observed, but the tape showed a decreasing trend in resistivity with increasing compression. At 60 % RH radial resistivity approached axial resistivity, and the influence of SAPs is reduced. The axial resistivity was around 18 Ωcm. The axial resistivity of the tape was less affected by humidity and compression than the radial resistivity.
Ageing reveal deterioration of swelling height, but had no influence on tape resistivity
Karakterisering av en semiledande svällande tejp
I närvaro av fukt och lokaliserade fältförbättringar kan vattenträd utvecklas inom polymerisoleringen av HV subsea kraftkablar. Vattenträd tenderar att växa obemärligt och försämra isolationsegenskaperna med tiden. Fuktigheten i isoleringen kan effektivt reduceras genom applicering av halvledande svällningsband. Halvledande svullnadstejp ger en unik kombination av elektrisk ledningsförmåga och stor vattenhållande kapacitet. Detta hänför sig till förekomsten av ledande kolsvart (CB) respektive superabsorberande polymer (SAP) partiklar. För att förstå massatransportegenskaperna hos vattenånga inom ett svällande tejp bestämdes transportkoefficienterna. Sorptionen av vattenånga avslöjade koncentrationsberoende transportkoefficienter och en allmän ökning i diffusion och löslighet med ökande vattenaktivitet. Detta tillskrives SAP-komponenternas hygroskopiska och polyelektrolytegenskaper och resulterade i en ökning i diffusiviteten med en faktor 100, vid ökning av relativ fuktighet (RH) från 7 till 65%. Vid högre vattenaktivitet antogs att bildandet av immobila vattenklyftor minskade diffusionen av vattenånga. Flera sorptionslägen föreslogs för sorptionsbeteendet hos tejpen mellan 10 och 80% RH. Införandet av konduktivitet inom bandet minskar potentiella skillnader genom flera kabelskikt och efterföljande fältförbättringar. Konduktivitets- och vattensorptionsegenskaperna hos det halvledande svällningsbandet kan emellertid ändras genom mekaniska kompressioner, som utövas av omgivande kabelkomponenter. Den elektriska resistiviteten hos ett fuktigt svällande tejp under belastning bestämdes därför. På grund av bandets anisotropi utfördes elektriska resistivitetsmätningar över (radiell riktning) och tillsammans med (axiell riktning) tejpen. Bandens radiella och axiella riktningar dominerades av närvaron av SAP och CB. En signifikant minskning av bandets radiella resistivitet observerades när fuktigheten ökades från 40% till 60% RH. Resistiviteten minskade med en faktor 100. Ingen signifikant effekt av kompression observerades, men tejpen visade en minskande trend i resistivitet med ökande kompression. Vid 60% RH-radiell resistivitet närmade sig axiell resistivitet, och påverkan av SAP sänks. Den axiella resistiviteten var omkring 18 Ωcm. Tejpens axiella resistivitet påverkades mindre av fuktighet och kompression än den radiella resistiviteten. Åldrande avslöjar försämring av svullnadshöjd, men hade ingen inverkan på bandresistivitet.In presence of moisture and localized field enhancements water trees might develop within the polymeric insulation of HV subsea power cables. Water trees tend to grow unnoticeable and deteriorate the insulation properties with time. The humidity within the insulation can efficiently be reduced through the application of semiconducting swelling tapes. Semi conducting swelling tapes provide a unique combination of electrical conductivity and a large water retention capacity. This is attributed to the presence of conductive carbon black (CB) and superabsorbent polymer (SAP) particles, respectively. To understand the mass transport properties of water vapor within a swelling tape, transport coefficients were determined. The sorption of water vapor revealed concentration dependent transport coefficients and a general increase in diffusion and solubility with increasing water activity. This was attributed to the hygroscopic and polyelectrolyte properties of the SAP components and resulted in an increase in diffusivity by a factor of 100, when increasing the relative humidity (RH) from 7 to 65 %. At higher water activity, it was assumed that the formation of immobile water clusters reduced the diffusion of water vapor. Several sorption modes were suggested for the sorption behaviour of the tape between 10 to 80 % RH. The introduction of conductivity within the tape reduces potential differences throughout several cable layers and subsequent field enhancements. However, conductivity and water sorption properties of the semi-conductive swelling tape can be altered by mechanical compressions, exerted by surrounding cable components. The electrical resistivity of a humid swelling tape under load was therefore determined. Due to the anisotropy of the tape, electrical resistivity measurements were performed across (radial direction) and along with (axial direction) the tape. The radial and axial directions of the tape were dominated by the presence of SAPs and CBs, respectively. A significant reduction in radial resistivity of the tape was observed when increasing the humidity from 40 % to 60 % RH. The resistivity decreased by a factor of 100. No significant effect of compression was observed, but the tape showed a decreasing trend in resistivity with increasing compression. At 60 % RH radial resistivity approached axial resistivity, and the influence of SAPs is reduced. The axial resistivity was around 18 Ωcm. The axial resistivity of the tape was less affected by humidity and compression than the radial resistivity. Ageing reveal deterioration of swelling height, but had no influence on tape resistivity
Rapport om lokalt tilgjengelige råvarer og avfallsstrømmer på Mære og deres karakteristiske egenskaper
publishedVersio
Hydrothermal Liquefaction of Bark-containing Nordic Biomass
Hydrothermal liquefaction (HTL) is a thermochemical process that takes advantage of the water present in the feedstock under process conditions where the water is kept as a liquid solvent using pressurized systems, avoiding energy losses to heat of evaporation and allowing for high carbon conversion to liquid fuels. In the Nordic countries, woody biomass residues, originating from pine and spruce, are seen as an abundant biomass feedstock for biofuels and bioenergy production due to the extensive forest industry and the by-products they generate. By using by-products and wastes as the source material, the fuel product becomes more sustainable. Bark is not often included in woody biomass feedstocks for HTL, therefore investigating its addition can provide opportunities for a more effective use of this waste stream. Spruce and pine stem wood, as well as their bark fractions, received from a Norwegian wood products company was milled and mixed with water to obtain slurries serving as the source material in this study. The stem wood underwent sub- and supercritical HTL conversion, at 350 and 400 °C respectively, in a 1L CSTR reactor operated in batch mode. The bark fractions were mixed with the stem wood at varying percentages to study the effect of bark presence in the slurry at supercritical (400 °C) conditions. Both the proportions of the HTL products (gaseous, liquid, and solid) and the product components displayed differences when the experiments were performed at sub- and supercritical conditions. Bark addition seemed to increase the gas yields and lower the char yields but did not alter the properties of the liquid products significantly. The results show that bark in the feedstock did not affect the investigated properties negatively, which is promising for biofuel production via HTL