10 research outputs found

    Environmentally sensitive life-cycle traits have low elasticity: implications for theory and practice

    Get PDF
    The relationships between population growth rate and the life-cycle traits contributing to it are nonlinear and variable. This has made it difficult for ecologists to consistently predict changes in population dynamics from observations on changes in life-cycle traits. We show that traits having a high sensitivity to chemical toxicants tend to have a low elasticity, meaning that changes in them have a relatively low impact on population growth rate, compared to other life-cycle traits. This makes evolutionary sense in that there should be selection against variability in population growth rate. In particular, we found that fecundity was generally more sensitive to chemical stress than was juvenile or adult survival or time to first reproduction, whereas fecundity typically had a lower elasticity than the other life-cycle traits. Similar relationships have been recorded in field populations for a wide range of taxa, but the conclusions were necessarily more tentative because stochastic effects and confounding variables could not be excluded. Better knowledge of these relationships can be used to optimize population management and protection strategies and to increase understanding of the drivers of population dynamics

    Target enzyme mutations are the molecular basis for resistance towards pharmacological inhibition of nicotinamide phosphoribosyltransferase

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inhibitors of nicotinamide phosphoribosyltransferase (NAMPT) are promising cancer drugs currently in clinical trials in oncology, including APO866, CHS-828 and the CHS-828 prodrug EB1627/GMX1777, but cancer cell resistance to these drugs has not been studied in detail.</p> <p>Methods</p> <p>Here, we introduce an analogue of CHS-828 called TP201565 with increased potency in cellular assays. Further, we describe and characterize a panel of cell lines with acquired stable resistance towards several NAMPT inhibitors of 18 to 20,000 fold compared to their parental cell lines.</p> <p>Results</p> <p>We find that 4 out of 5 of the resistant sublines display mutations of NAMPT located in the vicinity of the active site or in the dimer interface of NAMPT. Furthermore, we show that these mutations are responsible for the resistance observed. All the resistant cell lines formed xenograft tumours <it>in vivo</it>. Also, we confirm CHS-828 and TP201565 as competitive inhibitors of NAMPT through docking studies and by NAMPT precipitation from cellular lysate by an analogue of TP201565 linked to sepharose. The NAMPT precipitation could be inhibited by addition of APO866.</p> <p>Conclusion</p> <p>We found that CHS-828 and TP201565 are competitive inhibitors of NAMPT and that acquired resistance towards NAMPT inhibitors can be expected primarily to be caused by mutations in NAMPT.</p

    Ligestillingsindikatorer – hvad viser de om forskellene mellem mænd og kvinder i Danmark?

    No full text
    Danmarks Statistik har beregnet en række ligestillingsindikatorer, der viser forskelle og ligheder mellem mænd og kvinder inden for en række områder: Demokrati og Ledelse, Familie, Uddannelse, Arbejde, Løn, Indkomst, Helbred, Tryghed og Kultur. I denne artikel beskrives udviklingen mellem mænds og kvinders livsvilkår i Danmark baseret på en række udvalgte ligestillingsindikatorer

    Appendix B. A table showing that fecundity is generally the most sensitive and least elastic life-cycle trait in Daphnia magna.

    No full text
    A table showing that fecundity is generally the most sensitive and least elastic life-cycle trait in Daphnia magna

    Appendix A. A table showing that fecundity is generally the most sensitive and least elastic life-cycle trait across invertebrates.

    No full text
    A table showing that fecundity is generally the most sensitive and least elastic life-cycle trait across invertebrates

    Noninvasive assessment of pulse-wave velocity and flow-mediated vasodilation in anesthetized Göttingen minipigs

    No full text
    Few methods for noninvasive assessment of arterial stiffness and endothelial dysfunction in porcine models are available. The aim of this study was to evaluate methods for assessment of arterial stiffness and endothelial dysfunction in anesthetized Göttingen minipigs. Pulse-wave velocity (PWV) was assessed in male Göttingen minipigs (n = 8; age approximately 60 wk) by using applanation tonometry of the carotid and femoral arteries. In addition, flow-mediated vasodilation (FMD) was assessed by using vascular ultrasonography of the brachial artery to evaluate endothelial dysfunction. To evaluate the reproducibility of the methods, minipigs were anesthetized by intravenous infusion of ketamine and midazolam and examined every other day for a total of 3 trials. Neither examination day nor systolic, diastolic, or mean arterial blood pressure statistically influenced PWV or FMD. The median interexamination coefficient of variation was 17% for PWV and 59% for FMD. Measured values of PWV corresponded largely to those in clinically healthy humans, but FMD values were lower than expected for lean, young animals. Although the ketamine–midazolam anesthesia we used has been associated with minor hemodynamic effects in vivo, in vitro studies suggest that both drugs are vasodilatory. Therefore anesthesia might have influenced the endothelial response, contributing to the modest FMD response and the concurrent high coefficients of variation that we noted. We conclude that PWV—but not FMD—showed acceptable interexamination variation for its potential application in porcine models

    Brain proteome profiling implicates the complement and coagulation cascade in multiple system atrophy brain pathology

    No full text
    BACKGROUND: Multiple system atrophy (MSA) is a rare, progressive, neurodegenerative disorder presenting glia pathology. Still, disease etiology and pathophysiology are unknown, but neuro-inflammation and vascular disruption may be contributing factors to the disease progression. Here, we performed an ex vivo deep proteome profiling of the prefrontal cortex of MSA patients to reveal disease-relevant molecular neuropathological processes. Observations were validated in plasma and cerebrospinal fluid (CSF) of novel cross-sectional patient cohorts. METHODS: Brains from 45 MSA patients and 30 normal controls (CTRLs) were included. Brain samples were homogenized and trypsinized for peptide formation and analyzed by high-performance liquid chromatography tandem mass spectrometry (LC–MS/MS). Results were supplemented by western blotting, immuno-capture, tissue clearing and 3D imaging, immunohistochemistry and immunofluorescence. Subsequent measurements of glial fibrillary acid protein (GFAP) and neuro-filament light chain (NFL) levels were performed by immunoblotting in plasma of 20 MSA patients and 20 CTRLs. Finally, we performed a proteome profiling of 144 CSF samples from MSA and CTRLs, as well as other parkinsonian disorders. Data were analyzed using relevant parametric and non-parametric two-sample tests or linear regression tests followed by post hoc tests corrected for multiple testing. Additionally, high-throughput bioinformatic analyses were applied. RESULTS: We quantified more than 4,000 proteins across samples and identified 49 differentially expressed proteins with significantly different abundances in MSA patients compared with CTRLs. Pathway analyses showed enrichment of processes related to fibrinolysis and complement cascade activation. Increased fibrinogen subunit β (FGB) protein levels were further verified, and we identified an enriched recognition of FGB by IgGs as well as intra-parenchymal accumulation around blood vessels. We corroborated blood–brain barrier leakage by a significant increase in GFAP and NFL plasma levels in MSA patients that correlated to disease severity and/or duration. Proteome profiling of CSF samples acquired during the disease course, confirmed increased total fibrinogen levels and immune-related components in the soluble fraction of MSA patients. This was also true for the other atypical parkinsonian disorders, dementia with Lewy bodies and progressive supra-nuclear palsy, but not for Parkinson’s disease patients. CONCLUSION: Our results implicate activation of the fibrinolytic cascade and immune system in the brain as contributing factors in MSA associated with a more severe disease course. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00018-022-04378-z
    corecore