3 research outputs found

    Comparative evaluation of acetaminophen form (I) in commercialized paracetamol brands

    Get PDF
    The vibrational spectroscopy (FT-IR/Raman) and X-ray diffraction techniques are combined alongside the principal component analysis (PCA) as novel integrated analytical techniques to comparatively investigate latent chemical information and quality discrepancies regarding twelve (12) commercialized paracetamol (APAP) brands. This research aim is to present an advanced computational screening approach using spectroscopic and X-ray diffraction techniques with PCA as a tool to investigate the structural properties of pharmaceutical solid drugs by vibrational mode and diffraction pattern analyzes. Herein, the acquired vibrational, absorption, and diffraction datasets of APAP functionalities were collected at spectra and diffraction regions of intense peaks to develop predictive PCA models. Interestingly, the PCA models invalidate drug falsification in all the brands and predicted dissimilarities arising from observed differences in the vibrational/absorption modes of APAP form (I) in some brands due to excessive use of cheap (fillers and hydrocolloid alternatives) excipients. The PCA-PXRD model unveils discrepancies regarding the contrasting diffraction patterns (structure-property relationships) observed for APAP form (I) in the brands, which suggests differences in their pharmacokinetic properties cause an unapparent structural modification. Nevertheless, the comparative drug release studies present a%CDR between 93 and 98% in 30 min for all the brands, thus, structural modifications of APAP form (I) as observed in some brands show no serious effects on the%CDR and/ or solubility. Finally, it is expected that this work will contribute to the advances in screening techniques toward addressing the global drug challenges, especially in developing countries

    Using benthic macroinvertebrates as bioindicators to evaluate the impact of anthropogenic stressors on water quality and sediment properties of a West African lagoon

    No full text
    This study aimed to investigate the impact of anthropogenic stressors (landfilling, navigation for transport of goods, cooling in fossil fuel, urbanization, industrial expansion, agriculture activities, and recreational activities) on environmental variables, microbiological quality, and sediment properties using benthic macroinvertebrates as a bioindicator within Lagos Lagoon, Nigeria. Four (4) sampling stations were established with respect to their importance/anthropogenic activities within the Lagos Lagoon. Surface water, bottom substrates, and benthic macroinvertebrate fauna samples were collected bimonthly from each sampling station for a year and analyzed using appropriate standard methods and procedures. The highest pH range of 7.96–8.01 (7.98 ± 2.35) was recorded at Site IV, while the lowest range of 6.41–7.01 (6.15 ± 1.14) was observed at Site II, and there was a significant difference (p < 0.05) among the pH mean values across the sites. High values of salinity, chloride, sodium, COD, BOD, manganese, nickel, cadmium, and nitrate were recorded among the surface water physicochemical parameters, which were above WHO (2011) permissible limits, while the high concentrations of toxic metals (Pb, Cr, Zn, and Cd) was recorded in sediment. A total of 26 species of benthic macroinvertebrates were recorded during this study, which belongs to eight (8) classes. Gastropoda recorded the highest percentage contribution of 39.12%, followed by polychaeta accounting for 30.34%, while malacostraca contributed 2.63%. The highest abundance of macroinvertebrates was recorded at Site I (256 Indiv/m2), followed by Site IV (252 Indiv/m2), and the least was observed at Site II (195 Indiv/m2). Based on the results of the physico-chemical, heavy metals, microbial quality, and macroinvertebrates assemblage obtained from this study revealed the adverse effect of anthropogenic activities on water quality degradation. It plays a significant role in the distribution and diversity of benthic macroinvertebrates in an aquatic environment
    corecore