24 research outputs found

    Telemedicine as a tool to prevent multi-drug resistant tuberculosis in poor resource settings: Lessons from Nigeria

    Get PDF
    Background This mini review aims to provide an overview of the role of telemedicine in preventing multi-drug resistant tuberculosis (MDR-TB) in Nigeria. The specific objectives include examining the potential benefits of telemedicine, identifying the challenges associated with its implementation, and highlighting the importance of addressing infrastructure limitations and data privacy concerns. Methods This minireview is based on a comprehensive analysis of existing literature, including scholarly articles, and reports,. A systematic search was conducted using electronic databases, such as PubMed and Google Scholar, to identify relevant publications related to telemedicine and MDR-TB prevention in Nigeria. The selected articles were assessed for their relevance, and key findings were synthesized to provide an overview of the role of telemedicine in addressing the challenges of MDR-TB in Nigeria. Results The review demonstrates that telemedicine has the potential to significantly contribute to MDR-TB prevention efforts in Nigeria. The benefits of telemedicine include improved access to specialized care, enhanced patient adherence to treatment, and potential cost savings. However, challenges such as infrastructure limitations and data privacy concerns need to be addressed for successful implementation. Integrating telemedicine into the healthcare system has the potential to strengthen MDR-TB prevention, particularly in underserved areas, including within Nigeria. Specifically, the integration of telemedicine into the healthcare system can enhance access to specialized care, improve patient adherence, and potentially reduce costs associated with MDR-TB management. Conclusions Addressing infrastructure challenges, ensuring data privacy and security, and fostering trust among healthcare providers and patients are critical for successful implementation of telemedicine. Further research and policy frameworks are needed to guide the effective implementation and scale-up of telemedicine in MDR-TB prevention efforts in Nigeria

    Novel functional insights into ischemic stroke biology provided by the first genome-wide association study of stroke in indigenous Africans

    Get PDF
    \ua9 The Author(s) 2024. Background: African ancestry populations have the highest burden of stroke worldwide, yet the genetic basis of stroke in these populations is obscure. The Stroke Investigative Research and Educational Network (SIREN) is a multicenter study involving 16 sites in West Africa. We conducted the first-ever genome-wide association study (GWAS) of stroke in indigenous Africans. Methods: Cases were consecutively recruited consenting adults (aged > 18 years) with neuroimaging-confirmed ischemic stroke. Stroke-free controls were ascertained using a locally validated Questionnaire for Verifying Stroke-Free Status. DNA genotyping with the H3Africa array was performed, and following initial quality control, GWAS datasets were imputed into the NIH Trans-Omics for Precision Medicine (TOPMed) release2 from BioData Catalyst. Furthermore, we performed fine-mapping, trans-ethnic meta-analysis, and in silico functional characterization to identify likely causal variants with a functional interpretation. Results: We observed genome-wide significant (P-value < 5.0E−8) SNPs associations near AADACL2 and miRNA (MIR5186) genes in chromosome 3 after adjusting for hypertension, diabetes, dyslipidemia, and cardiac status in the base model as covariates. SNPs near the miRNA (MIR4458) gene in chromosome 5 were also associated with stroke (P-value < 1.0E−6). The putative genes near AADACL2, MIR5186, and MIR4458 genes were protective and novel. SNPs associations with stroke in chromosome 2 were more than 77 kb from the closest gene LINC01854 and SNPs in chromosome 7 were more than 116 kb to the closest gene LINC01446 (P-value < 1.0E−6). In addition, we observed SNPs in genes STXBP5-AS1 (chromosome 6), GALTN9 (chromosome 12), FANCA (chromosome 16), and DLGAP1 (chromosome 18) (P-value < 1.0E−6). Both genomic regions near genes AADACL2 and MIR4458 remained significant following fine mapping. Conclusions: Our findings identify potential roles of regulatory miRNA, intergenic non-coding DNA, and intronic non-coding RNA in the biology of ischemic stroke. These findings reveal new molecular targets that promise to help close the current gaps in accurate African ancestry-based genetic stroke’s risk prediction and development of new targeted interventions to prevent or treat stroke

    Dinuclear uranium(vi) salen coordination compound: An efficient visible-light-active catalyst for selective reduction of CO2to methanol

    No full text
    A new dinuclear uranyl salen coordination compound, [(UO2)2(L)2]·2MeCN [L = 6,6′-((1E,1′E)-((2,2-dimethylpropane-1,3-diyl)bis(azaneylylidene))-bis(methaneylylidene))bis(2-methoxyphenol)], was synthesized using a multifunctional salen ligand to harvest visible light for the selective photocatalytic reduction of CO2 to MeOH. The assembling of the two U centers into one coordination moiety via a chelating-bridging doubly deprotonated tetradentate ligand allowed the formation of U centers with distorted pentagonal bipyramid geometry. Such construction of compounds leads to excellent activity for the photocatalytic reduction of CO2, permitting a production rate of 1.29 mmol g-1 h-1 of MeOH with an apparent quantum yield of 18%. Triethanolamine (TEOA) was used as a sacrificial electron donor to carry out the photocatalytic reduction of CO2. The selective methanol formation was purely a photocatalytic phenomenon and confirmed using isotopically labeled 13CO2 and product analysis by 13C-NMR spectroscopy. The spectroscopic studies also confirmed the interaction of CO2 with the molecule of the title complex. The results of these efforts made it possible to understand the reaction mechanism using ESI-mass spectrometry

    Airborne trace elements near a petrochemical industrial complex in Thailand assessed by the lichen Parmotrema tinctorum (Despr. ex Nyl.) Hale

    Get PDF
    7siSeveral trace elements discharged by the petrochemical industry are toxic to humans and the ecosystem. In this study, we assessed airborne trace elements in the vicinity of the Map Ta Phut petrochemical industrial complex in Thailand by transplanting the lichen Parmotrema tinctorum to eight industrial, two rural, and one clean air sites between October 2013 and June 2014. After 242 days, the concentrations of As, Cd, Co, Cr, Cu, Hg, Mo, Ni, Pb, Sb, Ti, V, and Zn in lichens at most industrial sites were higher than those at the rural and the control sites; in particular, As, Cu, Mo, Sb, V, and Zn were significantly higher than at the control site (p < 0.05). Contamination factors (CFs) indicated that Cd, Cu, Mo, and Sb, which have severe health impacts, heavily contaminated at most industrial sites. Principal component analysis (PCA) showed that most elements were associated with industry, with lesser contributions from traffic and agriculture. Based on the pollution load indexes (PLIs), two industrial sites were highly polluted, five were moderately polluted, and one had a low pollution level, whereas the pollution load at the rural sites was comparable to background levels. This study reinforces the utility of lichens as cost-effective biomonitors of airborne elements, suitable for use in developing countries, where adequate numbers of air monitoring instruments are unavailable due to financial, technical, and policy constraints.partially_openopenBoonpeng, Chaiwat; Polyiam, Wetchasart; Sriviboon, Chutima; Sangiamdee, Duangkamon; Watthana, Santi; Nimis, Pier Luigi; Boonpragob, KansriBoonpeng, Chaiwat; Polyiam, Wetchasart; Sriviboon, Chutima; Sangiamdee, Duangkamon; Watthana, Santi; Nimis, Pierluigi; Boonpragob, Kansr

    Gaps in guidelines for the management of diabetes in low- and middle-income versus high-income countriesda systematic review

    No full text
    OBJECTIVE: The extentto which diabetes (DM) practice guidelines, often basedon evidence from high-income countries (HIC), can be implemented to improve outcomes in low- and middle-income countries (LMIC) is a critical challenge. We carried out a systematic review to compare type 2 DM guidelines in individual LMIC versus HIC over the past decade to identify aspects that could be improved to facilitate implementation. RESEARCH DESIGN AND METHODS: Eligible guidelines were sought from online databases and websites of diabetes associations and ministries of health. Type 2 DM guidelines published between 2006 and 2016 with accessible full publications were included. Each of the 54 eligible guidelines was assessed for compliance with the Institute of Medicine (IOM) standards, coverage of the cardiovascular quadrangle (epidemiologic surveillance, prevention, acute care, and rehabilitation), translatability, and its target audiences. RESULTS: Most LMIC guidelines were inadequate in terms of applicability, clarity, and dissemination planaswellassocioeconomic and ethical-legal contextualization.LMIC guidelines targeted mainly health care providers, with only a few including patients (7%), payers (11%), and policy makers (18%) as their target audiences. Compared with HIC guidelines, the spectrum of DM clinical care addressed by LMIC guidelines was narrow. Most guidelines from the LMIC complied with less than half of the IOM standards, with 12% of the LMIC guidelines satisfying at least four IOM criteria as opposed to 60% of the HIC guidelines (P &lt; 0.001). CONCLUSIONS: A new approachto the contextualization, content development, and deliveryofLMIC guidelines is needed to improve outcomes. © 2018 by the American Diabetes Association

    ACHIEVE conference proceedings: implementing action plans to reduce and control hypertension burden in Africa

    No full text
    The prevalence of hypertension, the commonest risk factor for preventable disability and premature deaths, is rapidly increasing in Africa. The African Control of Hypertension through Innovative Epidemiology, and a Vibrant Ecosystem [ACHIEVE] conference was convened to discuss and initiate the co-implementation of the strategic solutions to tame this burden toward achieving a target of 80% for awareness, treatment, and control by the year 2030. Experts, including the academia, policymakers, patients, the WHO, and representatives of various hypertension and cardiology societies generated a 12-item communique for implementation by the stakeholders of the ACHIEVE ecosystem at the continental, national, sub-national, and local (primary) healthcare levels
    corecore