1,323 research outputs found

    Superfluid 4He dynamics beyond quasiparticle excitations

    Get PDF
    The dynamics of superfluid 4He at and above the Landau quasiparticle regime is investigated by high precision inelastic neutron scattering measurements of the dynamic structure factor. A highly structured response is observed above the familiar phonon-maxon-roton spectrum, characterized by sharp thresholds for phonon-phonon, maxon-roton and roton-roton coupling processes. The experimental dynamic structure factor is compared to the calculation of the same physical quantity by a Dynamic Many-body theory including three-phonon processes self-consistently. The theory is found to provide a quantitative description of the dynamics of the correlated bosons for energies up to about three times that of the Landau quasiparticles.Comment: 5 pages, 3 figure

    Observation of magnetic fragmentation in spin ice

    Get PDF
    Fractionalised excitations that emerge from a many body system have revealed rich physics and concepts, from composite fermions in two-dimensional electron systems, revealed through the fractional quantum Hall effect, to spinons in antiferromagnetic chains and, more recently, fractionalisation of Dirac electrons in graphene and magnetic monopoles in spin ice. Even more surprising is the fragmentation of the degrees of freedom themselves, leading to coexisting and a priori independent ground states. This puzzling phenomenon was recently put forward in the context of spin ice, in which the magnetic moment field can fragment, resulting in a dual ground state consisting of a fluctuating spin liquid, a so-called Coulomb phase, on top of a magnetic monopole crystal. Here we show, by means of neutron scattering measurements, that such fragmentation occurs in the spin ice candidate Nd2_2Zr2_2O7_7. We observe the spectacular coexistence of an antiferromagnetic order induced by the monopole crystallisation and a fluctuating state with ferromagnetic correlations. Experimentally, this fragmentation manifests itself via the superposition of magnetic Bragg peaks, characteristic of the ordered phase, and a pinch point pattern, characteristic of the Coulomb phase. These results highlight the relevance of the fragmentation concept to describe the physics of systems that are simultaneously ordered and fluctuating.Comment: accepted in Nature Physic

    Vesignieite: a S=12S = \frac{1}{2} kagome antiferromagnet with dominant third-neighbor exchange

    Get PDF
    The spin-12\frac{1}{2} kagome antiferromagnet is an archetypal frustrated system predicted to host a variety of exotic magnetic states. We show using neutron scattering measurements that deuterated vesignieite BaCu3_{3}V2_{2}O8_{8}(OD)2_{2}, a fully stoichiometric S=1/2S=1/2 kagome magnet with <<1% lattice distortion, orders magnetically at TN=9T_{\mathrm{N}}=9K into a multi-k coplanar variant of the predicted triple-k octahedral structure. We find this structure is stabilized by a dominant antiferromagnetic 3rd^{\mathrm{rd}}-neighbor exchange J3J_3 with minor 1st^{\mathrm{st}}- or 2nd^{\mathrm{nd}}--neighbour exchange. The spin-wave spectrum is well described by a J3J_3-only model including a tiny symmetric exchange anisotropy

    Absence of strong magnetic fluctuations in the iron phosphide superconductors LaFePO and Sr2ScO3FeP

    Full text link
    We report neutron inelastic scattering measurements on polycrystalline LaFePO and Sr2ScO3FeP, two members of the iron phosphide families of superconductors. No evidence is found for any magnetic fluctuations in the spectrum of either material in the energy and wavevector ranges probed. Special attention is paid to the wavevector at which spin-density-wave-like fluctuations are seen in other iron-based superconductors. We estimate that the magnetic signal, if present, is at least a factor of four (Sr2ScO3FeP) or seven (LaFePO) smaller than in the related iron arsenide and chalcogenide superconductors. These results suggest that magnetic fluctuations are not as influential on the electronic properties of the iron phosphide systems as they are in other iron-based superconductors.Comment: 7 pages, 5 figure

    Magnetic relaxation studies on a single-molecule magnet by time-resolved inelastic neutron scattering

    Full text link
    Time-resolved inelastic neutron scattering measurements on an array of single-crystals of the single-molecule magnet Mn12ac are presented. The data facilitate a spectroscopic investigation of the slow relaxation of the magnetization in this compound in the time domain.Comment: 3 pages, 4 figures, REVTEX4, to appear in Appl. Phys. Lett., for an animation see also http://www.dcb.unibe.ch/groups/guedel/members/ow2/trins.ht

    Photometric stability analysis of the Exoplanet Characterisation Observatory

    Full text link
    Photometric stability is a key requirement for time-resolved spectroscopic observations of transiting extrasolar planets. In the context of the Exoplanet Characterisation Observatory (EChO) mission design, we here present and investigate means of translating spacecraft pointing instabilities as well as temperature fluctuation of its optical chain into an overall error budget of the exoplanetary spectrum to be retrieved. Given the instrument specifications as of date, we investigate the magnitudes of these photometric instabilities in the context of simulated observations of the exoplanet HD189733b secondary eclipse.Comment: submitted to MNRA

    Environment as a Witness: Selective Proliferation of Information and Emergence of Objectivity in a Quantum Universe

    Full text link
    We study the role of the information deposited in the environment of an open quantum system in course of the decoherence process. Redundant spreading of information -- the fact that some observables of the system can be independently ``read-off'' from many distinct fragments of the environment -- is investigated as the key to effective objectivity, the essential ingredient of ``classical reality''. This focus on the environment as a communication channel through which observers learn about physical systems underscores importance of quantum Darwinism -- selective proliferation of information about ``the fittest states'' chosen by the dynamics of decoherence at the expense of their superpositions -- as redundancy imposes the existence of preferred observables. We demonstrate that the only observables that can leave multiple imprints in the environment are the familiar pointer observables singled out by environment-induced superselection (einselection) for their predictability. Many independent observers monitoring the environment will therefore agree on properties of the system as they can only learn about preferred observables. In this operational sense, the selective spreading of information leads to appearance of an objective ``classical reality'' from within quantum substrate.Comment: New figures, to appear in PR
    corecore