596 research outputs found

    Colonic Patch and colonic SILT development are independent and differentially-regulated events

    Get PDF
    Intestinal lymphoid tissues have to simultaneously ensure protection against pathogens and tolerance towards commensals. Despite such vital functions, their development in the colon is poorly understood. Here, we show that the two distinct lymphoid tissues of the colon–colonic patches and colonic SILTs–can easily be distinguished based on anatomical location, developmental timeframe and cellular organization. Furthermore, whereas colonic patch development depended on CXCL13-mediated LTi cell clustering followed by LTα-mediated consolidation, early LTi clustering at SILT anlagen did not require CXCL13, CCR6 or CXCR3. Subsequent dendritic cell recruitment to and gp38+VCAM-1+ lymphoid stromal cell differentiation within SILTs required LTα; B cell recruitment and follicular dendritic cell differentiation depended on MyD88-mediated signalling, but not the microflora. In conclusion, our data demonstrate that different mechanisms, mediated mainly by programmed stimuli, induce the formation of distinct colonic lymphoid tissues, therefore suggesting that these tissues may have different functions

    Response Inhibition and Error Monitoring during a Visual Go/No-Go Task in Inuit Children Exposed to Lead, Polychlorinated Biphenyls, and Methylmercury

    Get PDF
    Background: Lead (Pb) and polychlorinated biphenyls (PCBs) are neurotoxic contaminants that have been related to impairment in response inhibition

    Rapid Diagnostic Algorithms as a Screening Tool for Tuberculosis: An Assessor Blinded Cross-Sectional Study

    Get PDF
    Background: A major obstacle to effectively treat and control tuberculosis is the absence of an accurate, rapid, and low-cost diagnostic tool. A new approach for the screening of patients for tuberculosis is the use of rapid diagnostic classification algorithms. Methods: We tested a previously published diagnostic algorithm based on four biomarkers as a screening tool for tuberculosis in a Central European patient population using an assessor-blinded cross-sectional study design. In addition, we developed an improved diagnostic classification algorithm based on a study population at a tertiary hospital in Vienna, Austria, by supervised computational statistics. Results: The diagnostic accuracy of the previously published diagnostic algorithm for our patient population consisting of 206 patients was 54% (CI: 47%–61%). An improved model was constructed using inflammation parameters and clinical information. A diagnostic accuracy of 86% (CI: 80%–90%) was demonstrated by 10-fold cross validation. An alternative model relying solely on clinical parameters exhibited a diagnostic accuracy of 85% (CI: 79%–89%). Conclusion: Here we show that a rapid diagnostic algorithm based on clinical parameters is only slightly improved by inclusion of inflammation markers in our cohort. Our results also emphasize the need for validation of new diagnostic algorithms in different settings and patient populations

    5-HT1A receptor blockade reverses GABAA receptor α3 subunit-mediated anxiolytic effects on stress-induced hyperthermia

    Get PDF
    Stress-related disorders are associated with dysfunction of both serotonergic and GABAergic pathways, and clinically effective anxiolytics act via both neurotransmitter systems. As there is evidence that the GABA(A) and the serotonin receptor system interact, a serotonergic component in the anxiolytic actions of benzodiazepines could be present. The main aim of the present study was to investigate whether the anxiolytic effects of (non-)selective alpha subunit GABA(A) receptor agonists could be reversed with 5-HT1A receptor blockade using the stress-induced hyperthermia (SIH) paradigm. The 5-HT1A receptor antagonist WAY-100635 (0.1-1 mg/kg) reversed the SIH-reducing effects of the non-alpha-subunit selective GABA(A) receptor agonist diazepam (1-4 mg/kg) and the GABA(A) receptor alpha(3)-subunit selective agonist TP003 (1 mg/kg), whereas WAY-100635 alone was without effect on the SIH response or basal body temperature. At the same time, co-administration of WAY-100635 with diazepam or TP003 reduced basal body temperature. WAY-100635 did not affect the SIH response when combined with the preferential alpha(1)-subunit GABA(A) receptor agonist zolpidem (10 mg/kg), although zolpidem markedly reduced basal body temperature. The present study suggests an interaction between GABA(A) receptor alpha-subunits and 5-HT1A receptor activation in the SIH response. Specifically, our data indicate that benzodiazepines affect serotonergic signaling via GABA(A) receptor alpha(3)-subunits. Further understanding of the interactions between the GABA(A) and serotonin system in reaction to stress may be valuable in the search for novel anxiolytic drugs

    Discovery of a Novel hsp65 Genotype within Mycobacterium massiliense Associated with the Rough Colony Morphology

    Get PDF
    So far, genetic diversity among strains within Mycobacterium massiliense has rarely been studied. To investigate the genetic diversity among M. massiliense, we conducted phylogenetic analysis based on hsp65 (603-bp) and rpoB (711-bp) sequences from 65 M. massiliense Korean isolates. We found that hsp65 sequence analysis could clearly differentiate them into two distinct genotypes, Type I and Type II, which were isolated from 35 (53.8%) and 30 patients (46.2%), respectively. The rpoB sequence analysis revealed a total of four genotypes (R-I to R-IV) within M. massiliense strains, three of which (R-I, R-II and R-III) correlated with hsp65 Type I, and other (R-IV), which correlated with Type II. Interestingly, genotyping by the hsp65 method agreed well with colony morphology. Despite some exceptions, Type I and II correlated with smooth and rough colonies, respectively. Also, both types were completely different from one another in terms of MALDI-TOF mass spectrometry profiles of whole lipid. In addition, we developed PCR-restriction analysis (PRA) based on the Hinf I digestion of 644-bp hsp65 PCR amplicons, which enables the two genotypes within M. massiliense to be easily and reliably separated. In conclusion, two distinct hsp65 genotypes exist within M. massiliense strains, which differ from one another in terms of both morphology and lipid profile. Furthermore, our data indicates that Type II is a novel M. massiliense genotype being herein presented for the first time. The disparity in clinical traits between these two hsp65 genotypes needs to be exploited in the future study

    Altered Neurocircuitry in the Dopamine Transporter Knockout Mouse Brain

    Get PDF
    The plasma membrane transporters for the monoamine neurotransmitters dopamine, serotonin, and norepinephrine modulate the dynamics of these monoamine neurotransmitters. Thus, activity of these transporters has significant consequences for monoamine activity throughout the brain and for a number of neurological and psychiatric disorders. Gene knockout (KO) mice that reduce or eliminate expression of each of these monoamine transporters have provided a wealth of new information about the function of these proteins at molecular, physiological and behavioral levels. In the present work we use the unique properties of magnetic resonance imaging (MRI) to probe the effects of altered dopaminergic dynamics on meso-scale neuronal circuitry and overall brain morphology, since changes at these levels of organization might help to account for some of the extensive pharmacological and behavioral differences observed in dopamine transporter (DAT) KO mice. Despite the smaller size of these animals, voxel-wise statistical comparison of high resolution structural MR images indicated little morphological change as a consequence of DAT KO. Likewise, proton magnetic resonance spectra recorded in the striatum indicated no significant changes in detectable metabolite concentrations between DAT KO and wild-type (WT) mice. In contrast, alterations in the circuitry from the prefrontal cortex to the mesocortical limbic system, an important brain component intimately tied to function of mesolimbic/mesocortical dopamine reward pathways, were revealed by manganese-enhanced MRI (MEMRI). Analysis of co-registered MEMRI images taken over the 26 hours after introduction of Mn^(2+) into the prefrontal cortex indicated that DAT KO mice have a truncated Mn^(2+) distribution within this circuitry with little accumulation beyond the thalamus or contralateral to the injection site. By contrast, WT littermates exhibit Mn^(2+) transport into more posterior midbrain nuclei and contralateral mesolimbic structures at 26 hr post-injection. Thus, DAT KO mice appear, at this level of anatomic resolution, to have preserved cortico-striatal-thalamic connectivity but diminished robustness of reward-modulating circuitry distal to the thalamus. This is in contradistinction to the state of this circuitry in serotonin transporter KO mice where we observed more robust connectivity in more posterior brain regions using methods identical to those employed here

    Translational studies in the complex role of neurotransmitter systems in anxiety and anxiety disorders

    Get PDF
    Discovery of innovative anxiolytics is severely hampering. Existing anxiolytics are developed decades ago and are still the therapeutics of choice. Moreover, lack of new drug targets forecasts a severe jeopardy in the future treatment of the huge population of CNS-diseased patients. We simply lack the knowledge on what is wrong in brains of anxious people (normal and diseased). Translational research, based on interacting clinical and preclinical research, is extremely urgent. In this endeavor, genetic and genomic approaches are part of the spectrum of contributing factors. We focus on three druggable targets: serotonin transporter, 5-HT1A, and GABAA receptors. It is still uncertain whether and how these targets are involved in normal and diseased anxiety processes. For serotonergic anxiolytics, the slow onset of action points to indirect effects leading to plasticity changes in brain systems leading to reduced anxiety. For GABAA benzodiazepine drugs, acute anxiolytic effects are found indicating primary mechanisms directly influencing anxiety processes. Close translational collaboration between fundamental academic and discovery research will lead to badly needed breakthroughs in the search for new anxiolytics.</p

    Asteroseismology and Interferometry

    Get PDF
    Asteroseismology provides us with a unique opportunity to improve our understanding of stellar structure and evolution. Recent developments, including the first systematic studies of solar-like pulsators, have boosted the impact of this field of research within Astrophysics and have led to a significant increase in the size of the research community. In the present paper we start by reviewing the basic observational and theoretical properties of classical and solar-like pulsators and present results from some of the most recent and outstanding studies of these stars. We centre our review on those classes of pulsators for which interferometric studies are expected to provide a significant input. We discuss current limitations to asteroseismic studies, including difficulties in mode identification and in the accurate determination of global parameters of pulsating stars, and, after a brief review of those aspects of interferometry that are most relevant in this context, anticipate how interferometric observations may contribute to overcome these limitations. Moreover, we present results of recent pilot studies of pulsating stars involving both asteroseismic and interferometric constraints and look into the future, summarizing ongoing efforts concerning the development of future instruments and satellite missions which are expected to have an impact in this field of research.Comment: Version as published in The Astronomy and Astrophysics Review, Volume 14, Issue 3-4, pp. 217-36
    corecore