257 research outputs found

    Advancing Alternative Analysis: Integration of Decision Science.

    Get PDF
    Decision analysis-a systematic approach to solving complex problems-offers tools and frameworks to support decision making that are increasingly being applied to environmental challenges. Alternatives analysis is a method used in regulation and product design to identify, compare, and evaluate the safety and viability of potential substitutes for hazardous chemicals.Assess whether decision science may assist the alternatives analysis decision maker in comparing alternatives across a range of metrics.A workshop was convened that included representatives from government, academia, business, and civil society and included experts in toxicology, decision science, alternatives assessment, engineering, and law and policy. Participants were divided into two groups and prompted with targeted questions. Throughout the workshop, the groups periodically came together in plenary sessions to reflect on other groups' findings.We conclude the further incorporation of decision science into alternatives analysis would advance the ability of companies and regulators to select alternatives to harmful ingredients, and would also advance the science of decision analysis.We advance four recommendations: (1) engaging the systematic development and evaluation of decision approaches and tools; (2) using case studies to advance the integration of decision analysis into alternatives analysis; (3) supporting transdisciplinary research; and (4) supporting education and outreach efforts

    Molecular imaging of cell death in vivo by a novel small molecule probe

    Get PDF
    Apoptosis has a role in many medical disorders, therefore assessment of apoptosis in vivo can be highly useful for diagnosis, follow-up and evaluation of treatment efficacy. ApoSense is a novel technology, comprising low molecular-weight probes, specifically designed for imaging of cell death in vivo. In the current study we present targeting and imaging of cell death both in vitro and in vivo, utilizing NST-732, a member of the ApoSense family, comprising a fluorophore and a fluorine atom, for both fluorescent and future positron emission tomography (PET) studies using an 18F label, respectively. In vitro, NST-732 manifested selective and rapid accumulation within various cell types undergoing apoptosis. Its uptake was blocked by caspase inhibition, and occurred from the early stages of the apoptotic process, in parallel to binding of Annexin-V, caspase activation and alterations in mitochondrial membrane potential. In vivo, NST-732 manifested selective uptake into cells undergoing cell-death in several clinically-relevant models in rodents: (i) Cell-death induced in lymphoma by irradiation; (ii) Renal ischemia/reperfusion; (iii) Cerebral stroke. Uptake of NST-732 was well-correlated with histopathological assessment of cell-death. NST-732 therefore represents a novel class of small-molecule detectors of apoptosis, with potential useful applications in imaging of the cell death process both in vitro and in vivo

    Dual-Earner Family Policies at Work for Single-Parent Families

    Get PDF
    Family dynamics are changing and single-parent families are becoming more common across countries. In their flagship report “Progress of the World’s Women, 2019–2020,” UN Women (2019) demonstrated that, contrary to popular belief, couples with children do not constitute a majority of all families, but rather there are many different types of families. Single parenthood is considered a “new social risk” in poverty and inequality (Bonoli, 2013). Therefore, policy makers and legislators have designed targeted policy specifically for single parents, such as targeted child benefits to single parents. In addition, legislation and social policy have been designed and implemented specifically for single parents, such as child support and family law such as child custody and shared residence. This study takes a different approach, based on the universalist argument that without adequate social protection that benefits all families, those families that are more vulnerable are often hit the hardest. We focus on family policies, and specifically we examine whether and to what extent single parents benefit from the same family policies that are available to all families with children

    Simulation of developmental changes in action potentials with ventricular cell models

    Get PDF
    During cardiomyocyte development, early embryonic ventricular cells show spontaneous activity that disappears at a later stage. Dramatic changes in action potential are mediated by developmental changes in individual ionic currents. Hence, reconstruction of the individual ionic currents into an integrated mathematical model would lead to a better understanding of cardiomyocyte development. To simulate the action potential of the rodent ventricular cell at three representative developmental stages, quantitative changes in the ionic currents, pumps, exchangers, and sarcoplasmic reticulum (SR) Ca2+ kinetics were represented as relative activities, which were multiplied by conductance or conversion factors for individual ionic systems. The simulated action potential of the early embryonic ventricular cell model exhibited spontaneous activity, which ceased in the simulated action potential of the late embryonic and neonatal ventricular cell models. The simulations with our models were able to reproduce action potentials that were consistent with the reported characteristics of the cells in vitro. The action potential of rodent ventricular cells at different developmental stages can be reproduced with common sets of mathematical equations by multiplying conductance or conversion factors for ionic currents, pumps, exchangers, and SR Ca2+ kinetics by relative activities

    Intracellular Function of Interleukin-1 Receptor Antagonist in Ischemic Cardiomyocytes

    Get PDF
    Background: Loss of cardiac myocytes due to apoptosis is a relevant feature of ischemic heart disease. It has been described in infarct and peri-infarct regions of the myocardium in coronary syndromes and in ischemia-linked heart remodeling. Previous studies have provided protection against ischemia-induced cardiomyocyte apoptosis by the anti-inflammatory cytokine interleukin-1 receptor-antagonist (IL-1Ra). Mitochondria triggering of caspases plays a central role in ischemia-induced apoptosis. We examined the production of IL-1Ra in the ischemic heart and, based on dual intra/extracellular function of some other interleukins, we hypothesized that IL-1Ra may also directly inhibit mitochondria-activated caspases and cardiomyocyte apoptosis. Methodology/Principal Findings: Synthesis of IL-1Ra was evidenced in the hearts explanted from patients with ischemic heart disease. In the mouse ischemic heart and in a mouse cardiomyocyte cell line exposed to long-lasting hypoxia, IL-1Ra bound and inhibited mitochondria-activated caspases, whereas inhibition of caspase activation was not observed in the heart of mice lacking IL-1Ra (Il-1ra−/−) or in siRNA to IL-1Ra-interfered cells. An impressive 6-fold increase of hypoxia-induced apoptosis was observed in cells lacking IL-1Ra. IL-1Ra down-regulated cells were not protected against caspase activation and apoptosis by knocking down of the IL-1 receptor, confirming the intracellular, receptor-independent, anti-apoptotic function of IL-1Ra. Notably, the inhibitory effect of IL-1Ra was not influenced by enduring ischemic conditions in which previously described physiologic inhibitors of apoptosis are neutralized. Conclusions/Significance: These observations point to intracellular IL-1Ra as a critical mechanism of the cell self-protection against ischemia-induced apoptosis and suggest that this cytokine plays an important role in the remodeling of heart by promoting survival of cardiomyocytes in the ischemic regions

    Gender Pay Gaps in the Former Soviet Union: A Review of the Evidence

    Full text link
    The goal of this paper is to examine the patterns and movements of the gender pay gaps in the countries of the former Soviet Union (FSU) and to place them in the context of advanced economies. We survey over 30 publications and conduct a meta-analysis of this literature. Gender pay gaps in the region are considerable and above the levels observed in advanced economies. Similar to advanced economies, industrial and occupational segregation widens the gaps in the FSU countries, whereas gender differences in educational attainment tend to shrink them. However, a much higher proportion of the gaps remain unexplained, pointing toward the role of unobserved gender differences related to actual and perceived productivity. Over the last 25 years, the gaps contracted in most FSU countries, primarily due to the reduction in the unexplained portion. Underlying the contraction at the mean are different movements in the gap across the pay distribution. Although the glass-ceiling effect has diminished in some FSU countries, it has persisted in others. We investigate the reasons underlying these findings and argue that the developments in the FSU region shed new light on our understanding of the gender pay gaps

    Fusicoccin Counteracts the Toxic Effect of Cadmium on the Growth of Maize Coleoptile Segments

    Get PDF
    The effects of cadmium (Cd; 0.1–1000 μM) and fusicoccin (FC) on growth, Cd2+ content, and membrane potential (Em) in maize coleoptile segments were studied. In addition, the Em changes and accumulation of Cd and calcium (Ca) in coleoptile segments treated with Cd2+ combined with 1 μM FC or 30 mM tetraethylammonium (TEA) chloride (K+-channel blocker) were also determined. In this study, the effects of Ca2+-channel blockers [lanthanum (La) and verapamil (Ver)] on growth and content of Cd2+ and Ca2+ in coleoptile segments were also investigated. It was found that Cd at high concentrations (100 and 1000 μM) significantly inhibited endogenous growth of coleoptile segments and simultaneously measured proton extrusion. FC combined with Cd2+ counteracted the toxic effect of Cd2+ on endogenous growth and significantly decreased Cd2+ content (not the case for Cd2+ at the highest concentration) in coleoptile segments. Addition of Cd to the control medium caused depolarization of Em, the extent of which was dependent on Cd concentration and time of treatment with Cd2+. Hyperpolarization of Em induced by FC was suppressed in the presence of Cd2+ at 1000 μM but not Cd2+ at 100 μM. It was also found that treatment of maize coleoptile segments with 30 mM TEA chloride caused hyperpolarization of Em and decreased Cd2+ content in coleoptile segments, suggesting that, in the same way as for FC, accumulation of Cd2+ was dependent on plasma membrane (PM) hyperpolarization. Similar to FC, TEA chloride also decreased Ca2+ content in coleoptile segments. La and Ver combined with Cd2+ (100 μM) significantly decreased Cd content in maize coleoptile segments, but only La completely abolished the toxic effect of Cd2+ on endogenous growth and growth in the presence of FC. Taken together, these results suggest that the mechanism by which FC counteracts the toxic effect of Cd2+ (except at 1000 μM Cd2+) on the growth of maize coleoptile segments involves both stimulation of PM H+-ATPase activity by FC as well as Cd2+-permeable, voltage-dependent Ca channels, which are blocked by FC and TEA chloride-induced PM hyperpolarization
    corecore