422 research outputs found
Heterogeneous nucleation and heat flux avalanches in La(Fe, Si)13 magnetocaloric compounds near the critical point
The phase transformation kinetics of LaFe11.41Mn0.30Si1.29-H1.65 magnetocaloric compound is
addressed by low rate calorimetry experiments. Scans at 1 mK/s show that its first order phase
transitions are made by multiple heat flux avalanches. Getting very close to the critical point, when
the transition becomes of the second order type, the step-like discontinuous behaviour associated
with avalanches is smoothed out and the thermal hysteresis disappears. This result is confirmed by
magneto-resistivity measurements and allows to obtain accurate values of the temperature hysteresis
(DThyst = 0.37 K) at zero external magnetic field and of the critical field (Hc = 1.19 T). The number
and magnitude of heat flux avalanches change as the magnetic field strength is increased,
showing the interplay between the intrinsic energy barrier between phases and the microstructural
disorder of the sample
APPLICATION OF PHOTOGRAMMETRY TO BRAIN ANATOMY
This paper presents an on-going interdisciplinary collaboration to advance brain connectivity studies. Despite the evolution of noninvasive methods to investigate the brain connectivity structure using the diffusion magnetic resonance, in the neuroscientific community there is an open debate how to collect quantitative information of the main neuroanatomical tracts. Information on the structure and main pathways of brain's white matter are generally derived by manual dissection of the brain ex-vivo. This paper wants to present a photogrammetric method developed to support the collection of metric information of the main pathways, or set of fibres, of the white matter of brain. For this purpose, multi-temporal photogrammetric acquisitions, with a resolution better than 100 microns, are performed at different stages of the brain's dissection, and the derived dense point clouds are used to annotate the stem, i.e., the region where there is a greater density of fibres of a given pathway, and termination points of several neuroanatomical tracts, i.e. fibres
Algebraic damping in the one-dimensional Vlasov equation
We investigate the asymptotic behavior of a perturbation around a spatially
non homogeneous stable stationary state of a one-dimensional Vlasov equation.
Under general hypotheses, after transient exponential Landau damping, a
perturbation evolving according to the linearized Vlasov equation decays
algebraically with the exponent -2 and a well defined frequency. The
theoretical results are successfully tested against numerical -body
simulations, corresponding to the full Vlasov dynamics in the large limit,
in the case of the Hamiltonian mean-field model. For this purpose, we use a
weighted particles code, which allows us to reduce finite size fluctuations and
to observe the asymptotic decay in the -body simulations.Comment: 26 pages, 8 figures; text slightly modified, references added, typos
correcte
A priori control of zeolite phase competition and intergrowth with high-throughput simulations
Zeolites are versatile catalysts and molecular sieves with large topological diversity, but managing phase competition in zeolite synthesis is an empirical, labor-intensive task. In this work, we controlled phase selectivity in templated zeolite synthesis from first principles by combining high-throughput atomistic simulations, literature mining, human-computer interaction, synthesis, and characterization. Proposed binding metrics distilled from more than 586,000 zeolite-molecule simulations reproduced the extracted literature and rationalized framework competition in the design of organic structure-directing agents. Energetic, geometric, and electrostatic descriptors of template molecules were found to regulate synthetic accessibility windows and aluminum distributions in pure-phase zeolites. Furthermore, these parameters allowed us to realize an intergrowth zeolite through a single bi-selective template. The computation-first approach enables control of both zeolite synthesis and structure composition using a priori theoretical descriptors.D.S.-K. and R.G.-B. acknowledge the Energy Initiative (MITEI) and MIT International Science and Technology Initiatives (MISTI) Seed Funds. D.S.-K. was also funded by the MIT Energy Fellowship. C.P., E.B.-J., M.M., and A.C. acknowledge financial support by the Spanish government through the “Severo Ochoa” program (SEV-2016-0683, MINECO) and grant RTI2018-101033-B-I00 (MCIU/AEI/FEDER, UE). E.B.-J. acknowledges the Spanish government for an FPI scholarship (PRE2019-088360). Z.J., E.O., S.K., and Y.R.-L. acknowledge partial funding from Designing Materials to Revolutionize and Engineer our Future (DMREF) from the National Science Foundation (NSF); awards 1922311, 1922372, and 1922090; and the Office of Naval Research (ONR) under contract N00014-20-1-2280. S.K. was additionally funded by the Kwanjeong Educational Fellowship. Z.J. was also supported by the Department of Defense (DoD) through the National Defense Science Engineering Graduate (NDSEG) fellowship program. T.W. acknowledges financial support by the Swedish Research Council (grant no. 2019-05465). Computer calculations were executed at the Massachusetts Green High-Performance Computing Center with support from MIT Research Computing and at the Extreme Science and Engineering Discovery Environment (XSEDE) (53) Expanse through allocation TG-DMR200068
Emotion based attentional priority for storage in visual short-term memory
A plethora of research demonstrates that the processing of emotional faces is prioritised over non-emotive stimuli when cognitive resources are limited (this is known as ‘emotional superiority’). However, there is debate as to whether competition for processing resources results in emotional superiority per se, or more specifically, threat superiority. Therefore, to investigate prioritisation of emotional stimuli for storage in visual short-term memory (VSTM), we devised an original VSTM report procedure using schematic (angry, happy, neutral) faces in which processing competition was manipulated. In Experiment 1, display exposure time was manipulated to create competition between stimuli. Participants (n = 20) had to recall a probed stimulus from a set size of four under high (150 ms array exposure duration) and low (400 ms array exposure duration) perceptual processing competition. For the high competition condition (i.e. 150 ms exposure), results revealed an emotional superiority effect per se. In Experiment 2 (n = 20), we increased competition by manipulating set size (three versus five stimuli), whilst maintaining a constrained array exposure duration of 150 ms. Here, for the five-stimulus set size (i.e. maximal competition) only threat superiority emerged. These findings demonstrate attentional prioritisation for storage in VSTM for emotional faces. We argue that task demands modulated the availability of processing resources and consequently the relative magnitude of the emotional/threat superiority effect, with only threatening stimuli prioritised for storage in VSTM under more demanding processing conditions. Our results are discussed in light of models and theories of visual selection, and not only combine the two strands of research (i.e. visual selection and emotion), but highlight a critical factor in the processing of emotional stimuli is availability of processing resources, which is further constrained by task demands
Towards a Proof Theory of G\"odel Modal Logics
Analytic proof calculi are introduced for box and diamond fragments of basic
modal fuzzy logics that combine the Kripke semantics of modal logic K with the
many-valued semantics of G\"odel logic. The calculi are used to establish
completeness and complexity results for these fragments
BRCA1 is an essential regulator of heart function and survival following myocardial infarction
The tumour suppressor BRCA1 is mutated in familial breast and ovarian cancer but its role in protecting other tissues from DNA damage has not been explored. Here we show a new role for BRCA1 as a gatekeeper of cardiac function and survival. In mice, loss of BRCA1 in cardiomyocytes results in adverse cardiac remodelling, poor ventricular function and higher mortality in response to ischaemic or genotoxic stress. Mechanistically, loss of cardiomyocyte BRCA1 results in impaired DNA double-strand break repair and activated p53-mediated pro-apoptotic signalling culminating in increased cardiomyocyte apoptosis, whereas deletion of the p53 gene rescues BRCA1-deficient mice from cardiac failure. In human adult and fetal cardiac tissues, ischaemia induces double-strand breaks and upregulates BRCA1 expression. These data reveal BRCA1 as a novel and essential adaptive response molecule shielding cardiomyocytes from DNA damage, apoptosis and heart dysfunction. BRCA1 mutation carriers, in addition to risk of breast and ovarian cancer, may be at a previously unrecognized risk of cardiac failure
- …